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Abstract

This paper examines whether banks strategically incorporate their competitors’ liquidity
mismatch policies when determining their own and the impact of these collective decisions
on financial stability. Using a novel identification strategy exploiting the presence of
partially overlapping peer groups, I show that banks’ liquidity transformation activity
is driven by that of their peers. These correlated decisions are concentrated on the
asset side of riskier banks and are asymmetric, with mimicking occurring only when
competitors take more risk. Accordingly, this strategic behavior increases banks’ default
risk and overall systemic risk, highlighting the importance of regulating liquidity risk from
a macroprudential perspective. (JEL G01, G20, G21, G28)
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1 Introduction

Banks have a unique ability to create liquidity by financing illiquid, long-maturity assets such

as corporate loans with liquid, short-term liabilities such as demand deposits (Diamond and

Dybvig, 1983). This combination of lending and deposit-taking activities protects firms and

households against idiosyncratic and systematic liquidity shocks (Kashyap, Rajan, and Stein,

2002; Gatev and Strahan, 2006) and promotes economic growth (Bencivenga and Smith, 1991;

Berger and Sedunov, 2017). However, due to their fundamental liquidity provision role, banks

are also intrinsically fragile. As exposed by the 2007–2009 financial crisis, excessive liquidity

mismatch can lead to bank runs, the breakdown of wholesale markets, and distressed asset

sales that threaten the solvency of individual banks and the financial system (Brunnermeier,

2009; Tirole, 2011). Nonetheless, as recent theoretical literature emphasizes, the relationship

between excessive liquidity transformation and financial instability can be exacerbated even

further when banks engage in strategic risk-taking behavior in the form of common portfolio

choices (e.g., Farhi and Tirole, 2012; Albuquerque, Cabral, and Guedes, 2019).1 Using a novel

identification strategy exploiting the presence of partially overlapping peer groups, this paper

shows empirically that banks do take correlated portfolio decisions and that such strategic

behavior has a negative impact on the stability of the financial sector.

The incentive for banks to engage in collective risk-taking strategies can be rationalized

on different grounds. Ratnovski (2009), Farhi and Tirole (2012), and Acharya, Mehran, and

Thakor (2016), among others, suggest that this behavior occurs due to the presence of bailout

guarantees in case of generalized distress. This “too many to fail” problem (Acharya and

Yorulmazer, 2007, 2008; Brown and Dinç, 2011) leads to time-inconsistent and imperfectly

targeted support to distressed banks to prevent contagion and makes their balance sheet choices

strategic complements. Correlated portfolio choices can also be driven by contractual features

in the compensation of bank managers. In fact, Albuquerque, Cabral, and Guedes (2019)

1While in the subprime mortgage crisis the commonality of asset portfolios at banks was in the form of
real estate loans, correlated portfolio choices during booms have been observed in various other forms in many
crises throughout history (Reinhart and Rogoff, 2009).
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show that relying on relative performance evaluation (RPE) in compensation packages leads

managers to disproportionately choose investments that are correlated with with those of their

peers. While public guarantees would magnify this mechanism, RPE and associated correlated

portfolio choices generate systemic risk even in the absence of a lender of last resort (LOLR).2

Ultimately, commonality in portfolio exposures and unreasonably high liquidity transformation

activity may have a considerably negative impact on financial stability due to higher correlation

of defaults, inefficient contagious liquidations, and amplification of the impact of liquidity

shocks (Allen, Babus, and Carletti, 2012; Acharya and Naqvi, 2012; Acharya and Thakor,

2016). This can sow the seeds for crises associated with costly recessions and significant

distributional consequences (Reinhart and Rogoff, 2009).3

While theoretically intuitive, identifying peer effects is empirically challenging since strategic

reactions are intrinsically simultaneous (i.e., the reflection problem) and due to potential

correlated effects in which all banks in the same local network are subject to unobserved

shocks that lead them to choose similar policies (Manski, 1993). To counter these issues, I

use an identification strategy based on Bramoullé, Djebbari, and Fortin (2009) and De Giorgi,

Pellizzari, and Redaelli (2010) in which a structure of connections resembling a social network

can be used to solve the reflection problem and construct a valid instrumental variable to

account for potential correlated effects. The key feature I exploit is that large cross-border

bank holding companies tend to manage liquidity on a global scale and coordinate their

risk-management policies within the group (e.g., Cetorelli and Goldberg, 2012a,b; Anginer,

Cerutti, and Martinez Peria, 2017). Thus, while not part of the direct peer group of a

domestic bank i for liquidity mismatch decision-making, a foreign bank holding group should
2Similarly, Ozdenoren and Yuan (2017) predict that when agents have incentives to match industry average

efforts, contractual externalities from RPE generate excessive systemic risk-taking. Phelan (2017) and Morrison
and Walther (2019) also show that correlated exposures may not necessarily be driven by distorted incentives
due to bailout guarantees but as a mechanism to provide ex-post incentives for enforcement and create market
discipline. Common portfolio choices may also arise due to learning (i.e., free-riding in information acquisition)
that can lead to inefficient outcomes with fully rational agents (Banerjee, 1992). In such case, banks may put
more weight on the choices of others than on their own information, particularly when others are perceived as
having greater expertise (Bikhchandani, Hirshleifer, and Welch, 1998).

3Analyzing 17 advanced economies from 1870 to 2013, Jordà, Richter, Schularick, and Taylor (2017) find
that credit growth on the asset side of banks’ balance sheet and liquidity mismatch indicators are better
predictors of systemic financial crises than solvency measures such as capital ratios.
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still indirectly influence the policies of the domestic bank i if such holding company has a

subsidiary a that operates in the same country as bank i and that is part of i’s local network.

This structure of informal decision networks, in line with the theoretical literature on the

potential drivers of banks’ collective risk-taking strategies, generates “peers of peers” that

act as exclusion restrictions to solve the reflection problem. In addition, the policies of such

indirect peers can be used as a valid instrument that is orthogonal to the liquidity policies of

the domestic banks’ peers.

Using a sample of 1,584 commercial banks operating in OECD countries from 1999 to 2014

and the Berger and Bouwman (2009) liquidity creation measure to capture banks’ liquidity

transformation activity, I first show that financial intermediaries follow the liquidity mismatch

policies of their competitors when determining their own. The estimates indicate the economic

impact is large and consistent with coordinated behavior where banks constantly adjust to

one another’s decisions. Specifically, a one-standard-deviation increase in peer banks’ average

liquidity creation leads to a 5–9 percentage point increase in the liquidity created by individual

banks, corresponding to a 16–28% increase relative to the mean. Importantly, these findings

are robust to a battery of tests, including numerous peer group definitions, the inclusion of

country-year fixed effects to address any remaining omitted variable concerns, an alternative

instrument based on market data following Leary and Roberts (2014), as well as the use of the

Bai, Krishnamurthy, and Weymuller (2018) Liquidity Mismatch Index (LMI) and the Basel

III Net Stable Funding Ratio (BCBS, 2014) as alternative, though complementary, liquidity

mismatch indicators.

Given the importance of liquidity created off the balance sheet through loan commitments,

standby letters of credit, and other claims to liquid funds (e.g., Kashyap, Rajan, and Stein,

2002), I also consider a more granular quarterly sample of 472 commercial banks operating in

the United States during the same period. The estimated coefficients remain economically and

statistically significant, as well as remarkably similar in terms of magnitude across the liquidity

creation measures with and without off–balance sheet exposures. This confirms the results are
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robust to the use of higher frequency data and shows that competitors have a negligible impact

in the liquidity created by banks off the balance sheet. In fact, when decomposing aggregate

liquidity creation into its individual components, I find that the peer effects are concentrated

in the asset side of liquidity creation, of which lending is a key element. This result, present in

both samples, supports previous evidence pointing toward herding behavior in banks’ lending

policies (Rajan, 1994; Uchida and Nakagawa, 2007).

In terms of cross-sectional heterogeneity, I show that peer effects in liquidity mismatch

decisions are concentrated in ex ante riskier banks with lower profit stability, distance to

default, and capital ratios, with the latter suggesting that higher levels of funding liquidity risk

are not being compensated with higher capital ratios that could increase a bank’s probability

of survival during crises (Berger and Bouwman, 2013). I also find that large and small banks’

liquidity mismatch decisions are only sensitive to the choices of their respective counterparts—a

result indicating that learning (i.e., free-riding in information acquisition) is unlikely to play a

major role in this setting. Additionally, such mimicking behavior is relatively stronger among

larger banks. This finding is not only consistent with large banks taking more risk than small

banks in equilibrium since they internalize that their decisions directly affect the government’s

optimal bailout policy (Dávila and Walther, 2018), but also with risk-taking being driven by

the presence of RPE in compensation schemes that tends to be more prevalent among larger

banks (Albuquerque, Cabral, and Guedes, 2019).

Finally, I find that strategic complementarity in liquidity mismatch policies significantly

affects the stability of the financial sector. To examine the direction in which these peer effects

operate, I first show that the response of individual banks to the choices of competitors is

asymmetric. Specifically, individual banks mimic their respective peers only when competitors

are increasing funding liquidity risk, thus suggesting that banks’ behavior is indeed strategic.

I then show explicitly that, consistent with theoretical predictions (e.g., Allen, Babus, and

Carletti, 2012), correlated liquidity transformation activities increase both individual banks’
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default risk and overall systemic risk. Together, these results emphasize the importance of

regulating liquidity risk from a macroprudential perspective.

This paper contributes to the literature by empirically showing that banks engage in

strategic and correlated portfolio decisions that threaten the stability of the financial sector.

Despite extensive research on this issue (e.g., Ratnovski, 2009; Farhi and Tirole, 2012; Vives,

2014; Ozdenoren and Yuan, 2017; Albuquerque, Cabral, and Guedes, 2019), most conclusions

are based on theoretical results that lack empirical support. In fact, while there is some

evidence of peer effects in banks’ lending policies (Uchida and Nakagawa, 2007) and liquidity

risk-management decisions (Bonfim and Kim, 2019), these studies are not able to disentangle

whether this behavior is driven by banks simply facing common unobserved shocks or sharing

common characteristics that lead them to choose similar policies. In addition, this is to the

best of my knowledge the first study empirically examining the impact of banks’ collective

liquidity mismatch decisions on financial sector stability. This issue is particularly relevant

after the 2007–2009 global financial crisis, with both academics and policymakers questioning

the efficacy of recent liquidity regulatory reforms (e.g., Calomiris, Heider, and Hoerova, 2015;

Diamond and Kashyap, 2016; Segura and Suarez, 2017).4

While broadly consistent with the literature on bailout guarantees and individual banks’

risk-shifting behavior (e.g., Dam and Koetter, 2012), the results also show that moral hazard

is not necessarily confined to banks exogenously engaging in excessive risk-taking. Instead,

banks can also create aggregate risk by mimicking one another’s balance sheet structures and

behaving strategically. Besides, unlike Gropp, Hakenes, and Schnabel (2011), the identification

framework I use does not restrict collective risk-taking behavior to be driven by distorted

incentives due to the presence of the LOLR. Instead, consistent with the theoretical predictions

4As distinctly argued by Allen and Gale (2017), “with capital regulation there is a huge literature but
little agreement on the optimal level of requirements. With liquidity regulation, we do not even know what
to argue about.” Ultimately, the Basel III liquidity requirements may play only a limited role in reducing the
likelihood of a system-wide liquidity strain, as these requirements target individual banks and abstract from
the additional risk of simultaneous liquidity shortfalls due to interconnections between them (IMF, 2011).
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of Albuquerque, Cabral, and Guedes (2019), the results suggest that contractual features in

bank managers’ compensation schemes can also play an important role.5

2 Identification Strategy

Empirical Model. Let a given bank i operating in country j at time t be part of a peer group

Ni,j,t containing a total of ni,j,t peers. Let yi,j,t be the liquidity mismatch position of bank i,

and Xi,j,t and Zj,t a set of observed bank and country characteristics, respectively. Following

the standard linear-in-means model of Manski (1993), bank i’s outcome yi,j,t can be expressed

as a function of (i) the mean outcome of its peer group ȳ−i,j,t, (ii) average characteristics of its

peer group X̄−i,j,t−1, and (iii) bank i’s and country j’s characteristics:

yi,j,t = µi + βȳ−i,j,t + λ′X̄−i,j,t−1 + γ′Xi,j,t−1 + δ′Zj,t−1 + vt + εi,j,t (1)

where,

ȳ−i,j,t =
∑

c∈Ni,j,t yc,j,t

ni,j,t

; X̄−i,j,t =
∑

c∈Ni,j,t Xc,j,t

ni,j,t

The coefficient β captures the endogenous effect this paper aims to document—the influence

of peers’ liquidity mismatch choices on the respective decisions of bank i. Since bank i is

excluded, ȳ−i,j,t varies not only across countries and over time, but also across banks within each

country-year combination. The contextual effects in X̄−i,j,t−1 capture the propensity of bank i

to change its liquidity transformation policy in response to changes in other characteristics of

the peer group such as capital or profitability (e.g., Blume, Brock, Durlauf, and Jayaraman,

2015). Peer-, bank-, and country-level controls are lagged by one period to mitigate concerns

of reverse causality. Bank and time fixed effects are represented by µi and vt, respectively.

5This paper also complements the recent and growing literature showing that competitors have a significant
role on individual firms’ decision-making. Empirical evidence on peer effects in corporate actions shows that
competitors affect firms’ capital structure choices (Leary and Roberts, 2014), stock splits (Kaustia and Rantala,
2015), and dividend payment decisions (Grennan, 2019). Survey evidence also indicates that a significant
number of CFOs consider the financing decisions of the competitors important when determining their own
(Graham and Harvey, 2001).
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Identification Problem. Identifying peer effects is notoriously difficult because of two

well-known issues: (i) the reflection problem, a particular case of simultaneity, and (ii) potential

correlated or common group effects (Manski, 1993).

First, in standard linear-in-means models in which peer groups are fixed, reflection arises

because all agents in a given local network Nijt affect and are affected by all other agents. As a

result, one cannot disentangle if bank i’s decision is the cause or the effect of its peers’ respective

choices. This simultaneity in the behavior of interacting agents due to perfectly overlapping

peer groups introduces collinearity between the mean outcome of the peer group (endogenous

effect) and their mean characteristics (contextual effects). This issue alone prevents the

identification of these two effects, even in the absence of unobserved correlated shocks. In

contrast, under a structure resembling a social network, peer groups are individual specific and

partially overlap. This feature guarantees the existence of “peers of peers”—that is, agents

who are not in the peer group of another agent but that are included in the group of one of

the peers of this agent. Such indirect peers generate within-group variation in ȳ−i,j,t and thus

solve the reflection problem (Bramoullé, Djebbari, and Fortin, 2009).

While the presence of a network structure with partially overlapping peer groups allows me

to isolate the endogenous effect of interest, it does not necessarily allows me to estimate the

causal effect of peers’ influence on individual banks’ behavior. In fact, the estimation results

might still be biased due to the presence of group-specific unobservable factors affecting the

behavior of both individual agents and their peers. This can result in banks within the same

peer group behaving similarly because they face a common environment or common shocks,

rather than as a result of strategic behavior. In other words, even if reflection is perfectly

solved, the presence of correlated effects may still impede ȳ−i,j,t from being identified.

Identification Strategy. I use a novel identification strategy based on the generalized

linear-in-means model of Bramoullé, Djebbari, and Fortin (2009) and De Giorgi, Pellizzari,

and Redaelli (2010) in which a structure resembling a social network can be exploited to solve

the reflection problem and construct a valid IV to account for correlated effects. In detail,

8



the presence of partially overlapping peer groups generates “peers of peers” that can be used

as a relevant instrument. By construction, the decision of a certain bank that is not part

of bank i’s peer group, but is included in the group of one of i’s peers, is uncorrelated with

bank i’s peer group fixed effect and correlated with the mean outcome of i’s group through

the endogenous interactions (De Giorgi, Pellizzari, and Redaelli, 2010). Such an instrument is

therefore orthogonal to the bank i peers’ liquidity policies, extracting the exogenous part of

its variation and identifying all the relevant parameters.

Importantly, the effect can be identified only if there are banks operating in the same

country that have different direct contacts affecting their liquidity mismatch decisions. Such

a rich structure of connections is likely to exist in the banking sector since large cross-border

banking groups tend to manage liquidity on a global scale (Cetorelli and Goldberg, 2012a,b).

As a result, it is reasonable to assume that in addition to the liquidity mismatch choices

of its direct competitors, a foreign-owned subsidiary also takes into consideration the overall

liquidity transformation policies of its parent bank holding group when determining its own.

In such a case, the sets of peers of two given banks do not perfectly coincide if one of them

is a foreign-owned subsidiary and the other a domestic bank. This notion is also consistent

with Anginer, Cerutti, and Martinez Peria (2017), who find a positive and robust association

between parent banks’ and foreign subsidiaries’ default risk, even when accounting for the

default risk of other banks and firms in the home and host countries, as well as global factors.

This relationship is partially driven by managers of subsidiaries who are rarely independent

from their parents, thus suggesting that their risk-management policies tend to be coordinated.

To illustrate, consider the simple network presented of banks in Figure 1. Bank A, a

foreign-owned subsidiary of Bank X, competes in country j at time t with domestic Banks C1,

C2, C3, and C4. They interact as follows: (i) Bank A’s peer group includes Bank X, its parent

bank holding company, and Banks C1, C2, C3, and C4, which operate in the same country

and have similar size and business models; (ii) the peer groups of Banks C1, C2, C3, and C4

include only their respective domestic competitors—Bank A and the remaining C banks, but

9



not the foreign parent X. Thus, one can use the liquidity mismatch position of Bank X (the

indirect peer) as an instrument for the liquidity choice of the (direct) peers of Banks C1, C2,

C3, and C4.6 This instrument satisfies both the relevance and exclusion restrictions. First,

the liquidity mismatch policy of Bank X is relevant for the respective decisions of the peers of

Banks C1, C2, C3, and C4 since it should directly influence the liquidity choice of Bank A.

Finally, the exclusion restriction is also satisfied if the liquidity decision of Bank X is exogenous

to that of Banks C1, C2, C3, and C4’s own choice.7

Identifying Assumption and Definition of Peer Groups. Following Figure 1, the key

identifying assumption is that the foreign parent bank holding group X only affects the decisions

of domestic banks C1, C2, C3, and C4 indirectly through the average outcome of peers due

to the presence of X’s subsidiary. In other words, under such a network structure, a certain

domestic bank should have little incentive to directly mimic the liquidity mismatch policies of

a bank holding group based in a different country. In this setting, this seems plausible.

First, within-country banks are expected to have higher incentives to mimic their domestic

competitors since they share the same LOLR and are more likely to be exposed to the

same set of shocks and (correlated) investment opportunities (e.g., Ratnovski, 2009; Farhi

and Tirole, 2012). Second, peer influence for learning motives (e.g., Banerjee, 1992) is also

more likely to occur within countries since banks share a similar regulatory framework and

economic environment, and information for managers of small banks is more accessible. Finally,

studies examining the usage of explicit RPE in incentive contracts show that firms select peers

6In the case of having only one foreign-owned subsidiary in a peer group, there is no instrument for the
liquidity created by subsidiary A’s peers, so A must be dropped from the analysis. If there are two or more
distinct foreign-owned subsidiaries within the same peer group (e.g., banks A1 and A2 owned by foreign bank
holding groups X and Y, respectively), I keep both foreign-owned subsidiaries A1 and A2 in the estimation
if the two parents are located in different countries. In such a case, parent Y can identify A1, parent X can
identify A2, and for the remaining banks C1–C4, the instrument is the average of parents X and Y’s liquidity
creation. This is consistent with the framework of Bramoullé, Djebbari, and Fortin (2009) which requires only
that some of the indirect peers are not direct peers of the bank in question.

7The identifying assumption that a foreign-owned subsidiary considers the liquidity mismatch policy of its
parent bank holding company (in addition to that of its domestic peers) should be more appropriate when the
subsidiary is not too small or not too large relative to its parent. As a result, I exclude foreign parent bank
holding groups when their subsidiaries are more than 50% or less than 1% of the parents’ size when computing
the IV.
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Figure 1
Example of a simple network of banks
The figure shows a network of banks operating in country j in period t under a complete market
structure (e.g., Allen and Gale, 2000), but with the presence of a bank holding company based in
country p (Bank X) that affects the liquidity mismatch policy of its foreign-owned subsidiary (Bank
A). The different institutions interact as follows: (i) Bank A’s peer group for liquidity mismatch
decision-making purposes includes Bank X (its foreign parent bank holding company) and Bank
C1, C2, C3, and C4 (its domestic competitors that have similar size and business model); (ii) the
respective peer groups of Bank C1, C2, C3, and C4 include each other and Bank A, but not Bank
X—for instance, Bank C1’s peer group consists of Bank A, C2, C3, and C4.

narrowly to filter out common exogenous shocks to performance—for instance, based on size,

membership in the same local market index, industry, and correlation of stock returns (e.g.,

Albuquerque, 2009; Bizjak, Kalpathy, Li, and Young, 2018). Given that this evidence may

be specific to industries other than the banking sector, Table OA1 in the Online Appendix

shows the composition of peer groups for the largest banks operating in the United States in

2016, as reporting of this information in proxy statements is mandatory. The reported peer

groups suggest that financial intermediaries indeed choose peers based in the same country for

benchmarking purposes.8

8Citigroup, for instance, in 2016 changed the peer group that is officially used to determine executive pay
“due to the increasing challenges associated with comparing executive compensation at US financial services
firms to pay at firms headquartered outside the US that are subject to different regulatory environments.” This
modification of Citi’s peer group featured the removal of three foreign banks (Barclays, Deutsche Bank, and
HSBC) and inclusion of eight institutions from the United States to create a peer group of thirteen domestic
institutions. Consistent with the size criteria I use throughout the paper, the proxy statement also states that
“in selecting peers, the Compensation Committee used size-based metrics as primary screening criteria among
financial services firms.” (Citigroup Inc. Notice of Annual Meeting and Proxy Statement, April 25, 2017).
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To incorporate further heterogeneity in peer group composition, I also introduce a size

criterion when forming peer groups. In detail, the peer group of a given commercial bank i is

defined as other commercial banks of similar size operating in the same country j in the same

year t. To ensure that the results are not driven by a particular choice of peer group size,

I report results throughout the paper based on size groups of a maximum of 10, 20, and 30

banks—that is, each bank operating in a certain country in a certain year has 9, 19, and 29

competitors, respectively.9

Unlike small banks, large banks face both a higher idiosyncratic probability of a bailout

during a crisis because they are “too big to fail” and the incentive to herd due to a “too many

to fail” effect (Acharya and Yorulmazer, 2007; Brown and Dinç, 2011; Farhi and Tirole, 2012).

Both are driven by LOLR bailout guarantees that may lead to excessive risk-taking in the form

of excessive liquidity mismatch and correlated risk. Similarly, Dávila and Walther (2018) show

that large banks take more risk than small banks in equilibrium since they internalize that

their decisions directly affect the government’s optimal bailout policy. In addition, free-riding

in information acquisition is likely to be driven by a leader-follower model in which small banks’

liquidity mismatch choices are affected by the decisions of large banks, but not vice versa. This

type of behavior has been shown empirically by Leary and Roberts (2014) for non-financial

listed firms in the United States. Finally, the probability of RPE adoption also increases with

bank size (Ilic, Pisarov, and Schmidt, 2017; Albuquerque, Cabral, and Guedes, 2019).10

9The Federal Financial Institutions Examination Council (FFIEC) in the United States also differentiates
banks according to asset size and splits them into more than 10 different peer groups. The same set of criteria
to define peer groups is also proposed by Berger and Bouwman (2015), who suggest a benchmarking exercise
for executives and financial analysts in which a bank would compare its liquidity creation with that of its peers
to increase performance. Finally, the choice of peer group size (between 10 and 30 banks) is also consistent with
Bizjak, Lemmon, and Nguyen (2011) and Kaustia and Rantala (2015). The former study finds that the average
size of the peer group when setting executive compensation is 17.3 for S&P 500 firms and 15.8 for non-S&P
firms. The latter computes peer groups based on analyst-following, three-digit SIC codes, and six-digit GICS
codes to study peer effects in stock split decisions, and shows that the average peer group size is 11.7, 15.8,
and 23.5 firms, respectively, when looking at NYSE-listed entities.

10More generally, within-country banks with different size differ significantly in terms of loan portfolio and
funding composition. While larger banks tend to use riskier wholesale funding and are more likely to engage in
informationally transparent lending, smaller banks rely more on stable deposits and engage in informationally
opaque lending to small bank-dependent firms (Song and Thakor, 2007; Berger, Bouwman, and Kim, 2017).
Berger and Bouwman (2009) also find that liquidity creation differs significantly across large, medium, and
small banks.
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3 Sample and Descriptive Statistics

Data. To examine the relationship between banks’ strategic liquidity mismatch policies and

financial stability, I combine data from several sources and compile (i) a cross-country OECD

sample with annual frequency covering banks’ financial and ownership information, and (ii) a

more granular data set with quarterly bank-level data for the United States.

The main cross-country sample includes 1,584 commercial banks operating in a OECD

country from 1999 to 2014.11 The data on banks’ balance sheet and income statements is

obtained from BvD/Fitch Bankscope. To have information at the most disaggregated level

and avoid double-counting within the same institution, I discard consolidated entries if banks

report unconsolidated data.12 Thus, as in Gropp, Hakenes, and Schnabel (2011), for instance,

domestic and foreign subsidiaries are included as separate entities. While most bank-specific

variables are expressed in ratios, all variables in levels such as total assets are also adjusted

for inflation and converted into millions of dollars.13 Stock prices and number of shares

outstanding are collected from Thomson Reuters Datastream and matched with Bankscope

using the International Securities Identification Number (ISIN) for listed banks.

Ownership information for all commercial banks in the OECD sample is manually collected

from the BvD ownership database, banks’ and national central banks’ websites, and newspaper

articles obtained from Factiva. The data is further cross-checked with the Claessens and

11Out of the 34 OECD members, Estonia, Iceland, Israel, and Sweden are not included in the sample due
to the limited number of foreign-owned banks—if any in most years—that would not allow to identify the peer
effects of interest.

12I go to great lengths to (i) identify duplicate observations in each country-year and thus avoid capturing
spurious peer effects, and (ii) check whether the bank specialization reported in Bankscope is accurate. First,
in addition to discarding consolidated entries if banks report information at the unconsolidated level, I also
look for banks having the same address, nickname, website, or phone and drop the respective duplicates—for
instance, banks reporting information with different financial standards in the same year. Second, I cross-check
the specialization codes in Bankscope with those reported in Claessens and Van Horen (2015) and adjust them
accordingly. Finally, to further ensure that the sample only includes commercial banks—typically defined as
institutions that make commercial loans and issue transaction deposits—I exclude banks with deposits not
exceeding 5% of liabilities and with loans not exceeding 5% of total assets.

13The sample is also restricted to the largest 100 banks in each country, thus excluding smaller (mostly
regional) banks in the United States and Japan and limiting the overrepresentation of these two countries. In
practice, a bank is excluded if and only if it is not in the top 100 in terms of assets in the country it operates
in all years it is active. I also exclude branches of foreign banks since they generally do not report individual
information and are not covered by the LOLR of the country they operate.
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Van Horen (2015) bank ownership database. Compared with the latter, however, the database

I compile is unique in several aspects. First, while the Claessens and Van Horen (2015)

database indicates whether a certain bank is foreign-owned and the respective home country

of the parent bank, I obtain information on who the actual owner of this foreign-owned bank is

and its respective Bankscope identifier.14 In addition, while Claessens and Van Horen (2015)

report the country of ownership based on direct ownership, I obtain information and consider

throughout the paper the ultimate bank owner based on a 50% threshold. While limited

to OECD countries, the data used in this paper is therefore considerably more detailed and

provides a novel source of information.

With respect to country-level variables, I collect information on gross domestic product

(GDP) per capita, GDP growth, imports and exports of goods and services, and the Consumer

Price Index (CPI) from the World Bank’s WDI database and the Federal Reserve Bank (FRB)

of St. Louis Economic Data. The date of inception of explicit deposit insurance schemes is

obtained from Demirgüç-Kunt, Kane, and Laeven (2015), while the country-level measure of

macroprudential regulation intensity (i.e., cumulative sum of changes over time in the usage

intensity of capital buffers, interbank exposure limits, concentration limits, loan-to-value (LTV)

ratio limits, and reserve requirements) is from Cerutti, Correa, Fiorentino, and Segalla (2017).

Banking sector equity market indices are provided by MSCI.

Finally, the quarterly bank-level sample for the United States is from the FFIEC/FRB of

Chicago “Call Reports” and includes 472 commercial banks operating from 1999:Q1 to 2014:Q4.

These reports containing balance sheet, off–balance sheet, and income statement information

are combined with on– and off–balance sheet liquidity creation data available from Christa

Bouwman’s website. I also obtain stock price data from CRSP and use the CRSP-FRB Link

provided by the FRB of New York to match each regulatory bank identifier (RSSD) with a

14Consider the United States as an example. While the Claessens and Van Horen (2015) bank ownership
database only indicates the home country of the direct owner of HSBC Bank USA (United Kingdom), the
database I construct specifies who the ultimate owner is (HSBC Holdings Plc) by providing its Bankscope
identifier. With this information and using a parallel Bankscope data set with information at the consolidated
level, one can compute the liquidity created by the foreign parent bank holding company and construct the
main instrument used in this paper. The ownership data set is publicly available online in my personal website.

14



unique PERMCO. The sample includes not only individually traded banks but also those that

are part of a traded bank holding company. Nonetheless, to ensure that the liquidity is being

created by the sample banks, I follow Berger and Bouwman (2009) and exclude banks that are

not individually traded and which account for less than 90% of the holding assets.

Liquidity Mismatch Measures. Given that banks hold liquidity on their asset side and

provide liquidity through their liabilities, liquidity management is ultimately a joint decision

over both assets and liabilities (Gatev, Schuermann, and Strahan, 2009; Cornett, McNutt,

Strahan, and Tehranian, 2011; Donaldson, Piacentino, and Thakor, 2018). Thus, I build on

the work of Berger and Bouwman (2009) and use their liquidity creation indicator as my

main liquidity mismatch measure. By considering the different asset, liability, and equity

components of a bank’s balance sheet, this structural indicator provides a broad picture of the

overall funding mismatch of each financial institution.

In detail, the Berger and Bouwman (2009) liquidity creation (LC) measure for bank i

operating in country j at time t is defined as the liquidity-weighted sum of all bank balance

sheet items as a share of total assets:

LCi,j,t =
∑

c λacAi,j,t,c + ∑
z λlzLi,j,t,z

TAi,j,t

(2)

where λac and λlz are the weights for asset class Ac and liability category Lz, respectively. The

liquidity weights are fixed over time and assigned based on the ease, cost, and time it takes for

banks to dispose of their obligations to meet a sudden demand for liquidity, and for customers

to use liquid funds from banks. Since banks create liquidity by transforming illiquid assets such

as corporate loans into liquid liabilities such as demand deposits, both illiquid assets and liquid

liabilities are given a positive liquidity weight of 1/2. Similarly, since banks destroy liquidity

when they transform liquid assets such as cash or government securities into illiquid liabilities

such as long-term funding or equity, liquid assets, illiquid liabilities, and equity are given a

negative liquidity weight of −1/2. An intermediate weight of 0 is applied to assets and liabilities
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that are neither liquid nor illiquid. Since the granularity of the data is different in Bankscope

and the Call Reports used in Berger and Bouwman (2009), I adapt their classifications and

weights following the authors’ criteria as well as the categories defined in their more recent work

when using supervisory bank-level data for Germany (Berger, Bouwman, Kick, and Schaeck,

2016)—see Table OA2 in the Online Appendix.

In robustness tests I also consider two distinct, though complementary, liquidity mismatch

indicators: (i) the Basel III Net Stable Funding Ratio (NSFR) and (ii) the Bai, Krishnamurthy,

and Weymuller (2018) Liquidity Mismatch Index (LMI). The NSFR is a regulatory requirement

aimed at encouraging banks to hold more stable and longer-term funding against their less

liquid assets, thus reducing liquidity transformation risk. It is defined as the ratio of the

available amount of stable funding (ASF) to the required amount of stable funding (RSF) over

a one-year horizon. Banks should meet a regulatory minimum of 100%. I use the inverse of

the NSFR (denoted NSFRi) so that this indicator is directly comparable to the Berger and

Bouwman (2009) liquidity creation measure. While liquidity creation is an indicator of current

illiquidity, the NSFR captures what illiquidity would be under a stress scenario (Berger and

Bouwman, 2015).15

Finally, the Bai, Krishnamurthy, and Weymuller (2018) LMI captures the mismatch between

the market liquidity of assets and the funding liquidity of liabilities of a given bank. Unlike the

Berger and Bouwman (2009) liquidity creation measure, the liquidity weights are time-varying

with market liquidity conditions. In fact, while liquidity mismatch is defined in both measures

as the difference of liquidity-weighted assets and liabilities, the LMI uses market measures of

market and funding liquidity in addition to bank balance sheet information. These include

haircuts from tri-party repo transactions and the secondary loan market to derive the asset

liquidity weights, and the three-month OIS–Treasury bill spread used as the funding liquidity

factor to compute the liability liquidity weights. While Bai, Krishnamurthy, and Weymuller

15The weights to compute the NSFR are also presented in Table OA2 in the Online Appendix. These are
given according to the final calibrations provided by the Basel Committee (BCBS, 2014) but also adapted to
the granularity of Bankscope data. Where applicable, items are treated relatively conservatively—for instance,
all loans are assumed to have a maturity of more than 1 year and hence a RSF weight of 85%.
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(2018) use data from the FRY-9C Consolidated Report of Condition and Income containing

information on bank holding companies operating in the United States, for consistency with

the remainder of the analysis I use Call Reports data instead.16 I reverse the signs of the LMI

and express it as a share of total assets (denoted LMIi) so that, as before, this measure is

directly comparable to the Berger and Bouwman (2009) indicator.

Summary Statistics. Table 1 reports descriptive statistics for the main variables in the

cross-country sample. The average bank is creating liquidity (0.316), both on the asset

(0.169) and liability (0.147) sides of the balance sheet. If in place, it would be complying

with the regulatory NSFR (100.3%). Bank-level characteristics include size (ln[total assets]),

capital ratio (equity/assets), ROA (net income/assets), deposit share (deposits/assets), NPL

provisions (loan loss provisions/assets), liquidity ratio (liquid assets/assets), cost-to-income

ratio (non-interest expense/gross revenues), and non-interest income share (non-interest income

/total income), all winsorized at the 1st and 99th percentile levels. Country-level characteristics

include the logarithm of GDP per capita, GDP growth volatility (standard deviation of GDP

growth rate over the past five years), local market concentration (Herfindahl index), the

Cerutti, Correa, Fiorentino, and Segalla (2017) prudential regulation intensity measure, global

integration (imports plus exports of goods and services to GDP), deposit insurance (a dummy

variable equal to 1 if an explicit deposit insurance scheme is in place in country j in year t,

and 0 otherwise), and IFRS (a dummy variable equal to 1 if IFRS is in place in country j

in year t, and 0 otherwise) to account for potential reporting jumps at the time of a bank’s

accounting standards change. The bank- and country-level controls are comparable in terms

of magnitude to those in previous studies consistently showing their importance for banks’

financial decisions (e.g., Beltratti and Stulz, 2012; Beck, De Jonghe, and Schepens, 2013).

For completeness, Table OA3 in the Online Appendix presents summary statistics for all the

16I first verify that I match the values reported by Bai, Krishnamurthy, and Weymuller (2018) when using
FRY-9C. The weights are not affected by business models and, as a result, the LMI can be applied to either
bank holding companies or commercial banks. The detailed description of how to construct the LMI is provided
in Appendix I of Bai, Krishnamurthy, and Weymuller (2018). The repo haircut data is collected from the SEC
Edgar website until 2010 and the FRB of New York since 2010:Q1. The secondary loan market haircuts are
from the Loan Syndications & Trading Association. The OIS and Treasury bill data are from Bloomberg.
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peer banks’ characteristics considered—for instance, peers’ average liquidity creation, size, or

capitalization. Finally, Table OA4 in the Online Appendix reports summary statistics for the

quarterly U.S. sample of 472 listed banks.

Table 1: Summary statistics
Variables N Mean SD P25 P50 P75
Liquidity mismatch indicators:
Liquidity creation 13,954 0.316 0.236 0.171 0.342 0.473
Liquidity creation – asset side 13,954 0.169 0.220 0.030 0.225 0.344
Liquidity creation – liability side 13,954 0.147 0.147 0.038 0.145 0.255
NSFRi 13,954 0.997 0.525 0.739 0.892 1.082

Bank-level characteristics:
Size 13,954 8.319 2.127 6.706 8.166 9.764
Capital ratio 13,954 0.100 0.079 0.056 0.080 0.116
ROA 13,954 0.006 0.013 0.002 0.006 0.011
Deposit share 13,954 0.584 0.221 0.442 0.617 0.760
NPL provisions 13,954 0.004 0.008 0.000 0.002 0.005
Liquidity ratio 13,954 0.078 0.096 0.016 0.039 0.103
Cost-to-income ratio 13,954 0.631 0.285 0.500 0.622 0.744
Non-interest income share 13,954 0.370 0.234 0.203 0.338 0.500

Country-specific characteristics:
GDP per capita 13,954 10.43 0.552 10.37 10.53 10.71
GDP growth volatility 13,954 0.019 0.012 0.010 0.016 0.025
Concentration 13,954 0.188 0.134 0.097 0.152 0.251
Prudential regulation intensity 13,954 0.562 2.272 -1.000 0.000 1.000
Global integration 13,954 0.832 0.630 0.502 0.615 0.976
Deposit insurance 13,954 0.984 0.124 1.000 1.000 1.000
IFRS 13,954 0.199 0.399 0.000 0.000 0.000

This table presents summary statistics for the variables in the cross-country sample that includes 1,584
commercial banks operating in OECD countries from 1999 to 2014. Liquidity creation is the Berger and
Bouwman (2009) on–balance sheet liquidity creation measure divided by total assets. NSFRi is the inverse of the
Net Stable Funding Ratio. Table OA2 in the Online Appendix presents the weights given to the different balance
sheet items when computing both measures. Bank-level characteristics include size (ln[total assets]), capital
ratio (equity/assets), ROA (net income/assets), deposit share (deposits/assets), NPL provisions (loan loss
provisions/assets), liquidity ratio (liquid assets/total assets), cost-to-income ratio (non-interest expense/gross
revenues), and non-interest income share (non-interest income/total income). Country-level characteristics
include the logarithm of GDP per capita, GDP growth volatility (standard deviation of GDP growth rate
over the past five years), local market concentration (Herfindahl index), prudential regulation intensity (i.e.,
cumulative sum of changes over time in the usage intensity of capital buffers, interbank exposure limits,
concentration limits, LTV ratio limits, and reserve requirements), global integration (imports plus exports of
goods and services to GDP), deposit insurance (a dummy variable equal to 1 if an explicit deposit insurance
scheme is in place in country j in year t, and 0 otherwise), and IFRS (a dummy variable equal to 1 if IFRS is
in place in country j in year t, and 0 otherwise).
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4 Results

4.1 Peer Effects in Banks’ Liquidity Mismatch Decisions

Baseline Results. Table 2 reports the benchmark set of results examining whether the

liquidity mismatch decisions of a specific bank are determined by the respective choices of

its competitors. The table presents 2SLS coefficient estimates of Model (1) using the Berger

and Bouwman (2009) liquidity creation measure as the dependent variable and, exploiting

the presence of partially overlapping peer groups, the liquidity policy of “peers of peers” as

a relevant instrument (Bramoullé, Djebbari, and Fortin, 2009). The row at the top of the

table reports the peer effect of interest—that is, the estimated coefficient on the instrumented

peer banks’ average liquidity creation. Peer groups are defined as commercial banks operating

in the same country in the same year grouped into a maximum of 10 (Columns 1–2), 20

(Columns 3–4), and 30 banks (Columns 5–6) according to their size. The regressions in

Columns (1), (3), and (5) control for the standard set of bank, peer average, and country

characteristics used throughout the paper, while those in Columns (2), (4), and (6) include

additional covariates to minimize omitted variable concerns. All specifications include year

and bank fixed effects, and the t-statistics in parentheses are robust to heteroskedasticity and

within-peer-group dependence.17

Consistent with the theoretical predictions of Farhi and Tirole (2012) and Albuquerque,

Cabral, and Guedes (2019), among others, the results across all specifications in Table 2 show

that the liquidity created by individual banks is significantly and positively affected by the

liquidity transformation activity of the respective competitors. To ease the interpretation of

magnitudes and ensure comparability across different samples, all coefficients are scaled by

17Following the example in Figure 1, the peer group that includes Banks C1–C4 constitutes the relevant
cluster to build inference since there is no variation in the instrument across them. In other words, given that
the liquidity created by Bank X (the foreign parent bank holding group that owns the foreign subsidiary A)
should be positively correlated with that of C1, C2, C3, and C4 through the effect on A’s liquidity creation,
and since banks C1–C4 become identified using the characteristics of the same Bank X as an instrument,
the standard errors should be clustered at the peer group level. While the results are robust to alternative
units of clustering, clustering at the peer group level yields considerably more conservative standard errors and
first-stage F-statistics—see Table OA5 in the Online Appendix.
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the corresponding variable’s standard deviation. Thus, a one-standard-deviation increase in

peers’ average liquidity creation leads to a 5–9 percentage point increase in bank i’s liquidity

creation, corresponding to a 16–28% increase relative to the mean.18

While bank-specific liquidity mismatch decisions are mostly driven by direct responses to

the respective policies of competitors, some other peer characteristics such as their average

capital and non-interest revenue share also matter for its determination. Nevertheless, their

joint effect on individual banks’ liquidity decisions is economically small and not robust. This

suggests that (i) the results are not likely to be driven by shared characteristics between banks

and their respective peers, and that (ii) any bias due to omitted characteristics of competitors

that are relevant for bank i’s liquidity choices is likely to be small.

Identifying Assumptions. The relevance condition requires the IV to be significantly

correlated with peer banks’ average liquidity creation (the endogenous variable), and the results

in Table 2 show this is indeed the case. In fact, the instrument is always significant at the

1% level in the first stage of the 2SLS estimation in all specifications and the cluster-robust

Kleibergen and Paap (2006) F-statistic also rejects the hypothesis of a weak IV.

Together with the relevance condition, the exclusion restriction implies that the only role

the instrument plays in influencing the outcome variable is through its effect on the endogenous

variable. In other words, the identification strategy solves the endogeneity problem only if the

foreign parent bank holding group does not directly influence the liquidity mismatch decision

of a domestic bank i. Thus, the estimates may be biased if the liquidity created by the foreign

parent is correlated with either an omitted characteristic of peer banks that is relevant for

bank i’s liquidity policy, or an omitted bank i liquidity creation determinant. While the

results discussed above suggest a limited role of the former, the latter concern is addressed as

follows.

18The unscaled coefficient estimates can be retrieved by dividing each coefficient with the corresponding
variable’s standard deviation presented in Table OA3 in the Online Appendix. The results in Table OA6 show
that this effect is still statistically significant, though underestimated, when using OLS regressions.
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Table 2: Peer effects in banks’ liquidity mismatch decisions

Liquidity creation (1) (2) (3) (4) (5) (6)

Peers’ liquidity creation 0.055*** 0.050** 0.069*** 0.062*** 0.088*** 0.081***
(2.905) (2.478) (4.370) (3.648) (4.946) (4.031)

Peers’ size 0.010 0.010 0.009 0.009 0.007 0.007
(1.193) (1.255) (1.132) (1.196) (0.705) (0.755)

Peers’ capital ratio 0.004 0.003 0.013** 0.011* 0.019*** 0.016**
(0.744) (0.598) (2.137) (1.821) (2.694) (2.631)

Peers’ ROA 0.002 -0.001 -0.003 -0.005 0.003 0.004
(0.914) (-0.210) (-0.897) (-1.419) (0.734) (0.926)

Peers’ deposit share 0.003 0.003 -0.001 0.001 0.004 0.005
(0.694) (0.836) (-0.199) (0.113) (0.765) (0.916)

Peers’ NPL provisions 0.002 0.001 -0.001 -0.002 0.002 0.003
(0.969) (0.293) (-0.495) (-0.655) (0.656) (0.897)

Peers’ liquidity ratio 0.007 0.006 0.009*
(1.596) (1.058) (1.678)

Peers’ cost-to-income -0.005 -0.003 0.001
(-1.427) (-0.883) (0.200)

Peers’ non-interest income share 0.008*** 0.010*** 0.011***
(2.661) (2.944) (3.055)

Peer group size 10 10 20 20 30 30
No. observations 10,575 10,575 13,023 13,023 13,954 13,954
No. banks 1,407 1,407 1,528 1,528 1,584 1,584
No. peer groups 141 141 80 80 59 59
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
First-stage KP F-stat 21.67*** 19.23*** 15.44*** 14.97*** 12.12*** 10.14***
First-stage instrument 0.016*** 0.015*** 0.019*** 0.017*** 0.017*** 0.015***

(4.656) (4.385) (3.929) (3.870) (3.481) (3.184)
Mean of dependent variable 0.304 0.304 0.313 0.313 0.316 0.316

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bouwman (2009) on–balance sheet liquidity creation measure divided by total assets as
the dependent variable. Table OA2 in the Online Appendix presents the weights given to the different balance
sheet items when computing this measure. All coefficients are scaled by the corresponding variable’s standard
deviation and t-statistics (in parentheses) are robust to heteroskedasticity and within-peer-group dependence.
Peer groups are defined as commercial banks operating in the same country in the same year grouped into a
maximum of 10, 20, or 30 banks according to their size. The bank-specific (size, capital ratio, ROA, deposit
share, and NPL provisions) and country-level controls (GDP per capita, GDP growth volatility, concentration,
and prudential regulation intensity) are all defined in Table 1. Additional bank and country controls include
banks’ liquidity ratio, cost-to-income ratio, and non-interest income share, as well as global integration, deposit
insurance, and IFRS. Peer banks’ average characteristics comprise the same set of bank-specific controls in a
given specification, but are computed as the average across all banks within a certain peer group, excluding
bank i. All control variables are lagged by one period. First-stage KP F-stat is the cluster-robust Kleibergen
and Paap (2006) F-statistic testing for weak instruments. Statistical significance at the 10%, 5%, and 1% levels
is denoted by *, **, and ***, respectively.
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First, Columns (1) to (3) of Table 3 report the results of an extended version of Model

(1) with country×year fixed effects for country-year pairs with more than one peer group.

Despite being slightly smaller in magnitude, the estimated coefficients are still economically and

statistically significant, with estimates ranging from a 4 to 7 percentage point increase in bank

i’s liquidity creation following a one-standard-deviation increase in the liquidity created by its

competitors. This result corroborates the previous findings and helps ruling out alternative

explanations such as the effect being driven by changes in regulations or supervisory effort that

the model may not able to perfectly control for.

Second, to mitigate any remaining concerns that the results may still be biased due to

omitted time-varying bank characteristics, I apply the methodology developed by Altonji,

Elder, and Taber (2005) to quantify the relative importance of any remaining omitted variable

bias. Coefficient stability is computed as the ratio between each coefficient estimate including

controls as reported in Table 2 (numerator), and the difference between the latter and the

coefficient derived from a regression with the same number of observations but without any

controls (denominator). The results suggest that to explain the full effect of peers’ liquidity

creation, the covariance between unobserved factors and peers’ liquidity creation would have

to be between 10.09 to 58.58 times as high as the covariance of the included controls. In

comparison, Altonji, Elder, and Taber (2005) estimate a ratio of 3.55, which they interpret as

evidence that unobservables are unlikely to explain the effect they analyze. Accordingly, one

can conclude that the likelihood that unobserved heterogeneity explains the documented peer

effects is likely to be small.

Finally, the identifying assumption may still not be satisfied if the country where the foreign

parent bank holding company is headquartered and the country where the domestic banks

operate were subject to similar shocks that could influence the liquidity they both create. To

address this concern, I repeat the analysis with a modified IV that purges the common variation

in the baseline instrument. In detail, I first regress the liquidity created by the foreign parent

with observed country-level characteristics as well as country and time fixed effects. Then, the
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estimated residual ε̂p,j,t = L̂Cp,j,t − τ̂ ′Zj,t−1 − ω̂j − v̂t is used as an instrument for peer banks’

liquidity mismatch choices. This residual should better capture the idiosyncratic nature of the

foreign parents’ liquidity transformation risk management policies and thus offers a useful test

for identifying exogenous variation. The coefficient estimates reported in Columns (4) to (6)

of Table 3 remain statistically and economically significant.

Robustness Tests. I conduct a battery of tests to ensure the previous findings are robust.

First, to confirm that the results are not being driven by the choice of instrument used to

identify peer banks’ liquidity creation choices, Columns (1) to (3) of Table 4 show that the

previous estimates are robust to the use of an alternative IV based on market data. In detail,

following the identification strategy in Leary and Roberts (2014), the liquidity mismatch

decisions of competitors are now instrumented with the lagged idiosyncratic component of

peer banks’ equity returns. Specifically, I extract the idiosyncratic variation in stock returns

using a traditional asset pricing model augmented by a factor to purge common variation

among peers. The residual from this model is then lagged by one year and used to extract

the exogenous variation in peer banks’ liquidity choices—see a detailed description of the

methodology in Online Appendix A. Compared with the main identification strategy used in

this paper, however, this instrument only allows to identify the subset of publicly listed banks

in the sample. Nevertheless, the main results remain unchanged.

Second, given that in the benchmark case each bank i in country j in year t belongs to

a certain peer group of up to 30 banks based on their size, banks 30 and 31 in a size rank,

for instance, would never interact with each other as they belong to different peer groups.

Besides, bank 30 would give equal weight to the liquidity profile of banks 1, 2,. . . , 29, even

if there is a substantial difference in terms of size between banks 1 and 29. To ensure this

modeling choice is not driving the results, I also construct peer-weighted averages based on the

size similarity (inverse of the Euclidean distance) between all banks operating in country j in

year t, such that the smaller the distance between two banks in terms of size, the more weight
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the relationship has. Specifically, the peer influence weight between bank i and p operating in

the same country in the same year is defined as:

WeightSizeSimilarityi−p,j,t
= max (TAj,t)− |TAi,j,t − TAp,j,t|∑N

p=1 max (TAj,t)− |TAi,j,t − TAp,j,t|
(3)

where max (TAj,t)−|TAi,j,t − TAp,j,t| is the inverse of the Euclidean distance between the size

of bank i and p in country j in year t, and
N∑

p=1
max (TAj,t)− |TAi,j,t − TAp,j,t| is the sum of all

the inverse size distances in country j in year t. By construction, the sum of weights in each

country in each year is equal to 1. The estimate presented in Column (4) of Table 4 is not only

statistically significant, but also in line in terms of magnitude with the coefficients reported in

Table 2.

Third, Columns (5) to (7) of Table 4 present the results of a falsification test where the

analysis is conducted under the assumption that individual commercial banks follow other

financial institutions of similar size and business model but irrespective to the country where

they operate. This test is particularly important to ensure the peer groups are defined correctly.

In practice, I first rank all banks operating in OECD countries according to their total assets,

group them into peer groups of 10, 20, or 30 banks, and then construct the peer averages for

each bank accordingly while excluding bank i. The reported estimates show no statistically

significant results for the coefficient of interest, no matter how peer groups are defined. In

other words, individual banks’ liquidity mismatch policies are not sensitive to those of banks of

similar size that operate abroad. This is consistent with the a priori assumption when forming

peer groups that within-country banks are expected to have higher incentives to mimic their

competitors.

Fourth, to further ensure that the results are not driven by a particular choice of peer

group, I show in Panel A of Table OA7 in the Online Appendix that the conclusions remain

the same when considering alternative peer size groups of 5, 15, or 50 banks—that is, each bank

operating in a certain country in a given year has a maximum of 4, 14, and 49 competitors,

respectively.

24



Fifth, while the identifying assumption that a foreign-owned subsidiary considers the

liquidity mismatch policy of its parent bank holding group (in addition to that of its domestic

peers) should in principle be more appropriate when the subsidiary is not too small or not

too large relative to its parent, the results reported in Panel B of Table OA7 in the Online

Appendix show that the conclusions remain the same if not restricting the size of the parents in

relation to their respective subsidiaries when computing the IV. Similarly, the results are also

robust to more stringent relative size restrictions. These include excluding foreign parent bank

holding groups in which their respective subsidiaries are more than 25% or less than 1% of the

parents’ size (when tightening the “too big” restriction in relation to the baseline case), and

excluding foreign parent bank holding groups in which their respective subsidiaries are more

than 50% or less than 10% of the parents’ size (when tightening the “too small” restriction in

relation to the baseline case).

Sixth, the conclusions do not change when considering the inverse of the NSFR (NSFRi) as

an alternative, though complementary, liquidity mismatch indicator—while liquidity creation

is an indicator of current illiquidity, the NSFR captures what illiquidity would be under a stress

scenario (Berger and Bouwman, 2015). Panel A of Table OA8 in the Online Appendix follows

the same structure of Table 2, and the reported 2SLS estimated coefficients corroborate the

previous findings: the first-stage regression coefficient estimates and the Kleibergen and Paap

(2006) F-statistic show that the instrument is relevant and not weak, and the estimates on

the coefficient of interest indicate that the relationship between the liquidity transformation

risk of individual banks and those of its peers is positive and statistically significant in all

specifications.

Finally, the main findings also remain unchanged (i) when excluding banks operating in

the United States, thus suggesting that such collective behavior is pervasive across OECD

countries, (ii) when excluding all foreign-owned subsidiaries from the estimations, (iii) when

using the lagged peer banks’ liquidity creation (instead of a contemporaneous measure) as the

main explanatory variable, (iv) without winsorizing any of the control variables, and (v) when
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removing from the sample banks with asset growth above 75% in any of the years they are

active, since these may have been involved in mergers and acquisitions—see Tables OA8 and

OA9 in the Online Appendix.

Table 3: Peer effects in banks’ liquidity mismatch decisions – additional tests

Liquidity creation Country-year Modified
fixed effects instrument

(1) (2) (3) (4) (5) (6)

Peers’ liquidity creation 0.040** 0.044** 0.074* 0.076*** 0.089*** 0.103***
(2.037) (2.424) (1.754) (3.030) (6.195) (5.732)

Peer group size 10 20 30 10 20 30
No. observations 10,228 10,822 9,964 9,298 12,337 13,563
No. banks 1,375 1,315 1,163 1,362 1,509 1,569
No. peer groups 137 68 41 140 79 58
Bank characteristics Y Y Y Y Y Y
Peers avg. characteristics Y Y Y Y Y Y
Country controls - - - Y Y Y
Year FE - - - Y Y Y
Bank FE Y Y Y Y Y Y
Country-year FE Y Y Y N N N
First-stage KP F-stat 12.80*** 10.17*** 9.62*** 13.82*** 12.79*** 10.76***
First-stage instrument 0.013*** 0.016*** 0.008*** 0.011*** 0.013*** 0.013***

(3.578) (3.189) (3.102) (3.717) (3.576) (3.280)
Mean of dependent variable 0.300 0.305 0.313 0.302 0.313 0.315

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD
sample and the Berger and Bouwman (2009) on–balance sheet liquidity creation measure divided by
total assets as the dependent variable. Table OA2 in the Online Appendix presents the weights given
to the different balance sheet items when computing this measure. All coefficients are scaled by the
corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to heteroskedasticity
and within-peer-group dependence. Peer groups are defined as commercial banks operating in the same
country in the same year grouped into a maximum of 10, 20, or 30 banks according to their size. The
bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions) and country-level controls (GDP
per capita, GDP growth volatility, concentration, and prudential regulation intensity) are all defined in Table
1. Peer banks’ average characteristics comprise the same set of bank-specific controls but are computed as
the average across all banks within a certain peer group, excluding bank i. All control variables are lagged
by one period. First-stage KP F-stat is the cluster-robust Kleibergen and Paap (2006) F-statistic testing
for weak instruments. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***,
respectively.
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U.S. Evidence. As a final robustness test, I reiterate the previous analysis when considering

a quarterly sample of banks operating in the United States. Restricting the analysis to this

panel of banks serves multiple purposes. First, using data from the Call Reports ensures that

the results are not driven by potential problems in Bankscope in terms of different definitions of

certain balance sheet categories across countries. Second, it preserves homogeneity in terms of

regulatory framework, accounting standards, and economic conditions. Third, it allows testing

whether the results on peer influence are sensitive to the use of higher frequency data. Finally,

since the information provided is considerably more granular, it also allows using the Berger

and Bouwman (2009) on– and off–balance sheet liquidity creation measure as the dependent

variable. The latter is particularly relevant given the extensive literature highlighting the

importance of off–balance sheet liquidity creation through loan commitments, standby letters

of credit, and other claims to liquid funds (e.g., Kashyap, Rajan, and Stein, 2002). In the

United States, for instance, this accounts for almost half of all liquidity created (Berger and

Bouwman, 2009).

In detail, Table 5 reports two-stage least squares estimates of Model (1) using both the

Berger and Bouwman (2009) on– and off–balance sheet (Columns 1–3) and on–balance sheet

(Columns 4–6) liquidity creation measures divided by total assets as the dependent variables.

Since there are no corresponding quarterly level data for most parents of foreign subsidiaries

operating in the United States, it is not possible to use here this paper’s main identification

strategy based on Bramoullé, Djebbari, and Fortin (2009) and De Giorgi, Pellizzari, and

Redaelli (2010). Besides, there are only a few small, mostly regional, foreign-owned subsidiaries

operating in the United States, which would not allow to identify a large portion of the domestic

banks in the sample. To counter this issue, I follow Leary and Roberts (2014) and, as in

Columns (1)–(3) of Table 4, use as IV the lagged peer bank average equity return shock.

In this case, standard errors are clustered at the bank level since the instrument varies across

banks and over time. The estimated coefficients are still significant as well as similar in terms of

magnitude across the liquidity creation measures with and without off–balance sheet exposures.

28



This suggests that peer banks have a negligible impact in the liquidity created by individual

banks off the balance sheet. I explore this hypothesis in detail in the next section.

Finally, Table 6 considers the Bai, Krishnamurthy, and Weymuller (2018) Liquidity Mismatch

Index (LMI) as the outcome variable. Despite relatively fewer observations when compared

with Table 5 due to the more granular nature of the data required to compute this measure

and since some of the market data is only available from 2002:Q2, the LMI has the advantage

of using liquidity weights that are time-varying with market liquidity conditions. The baseline

results still hold when considering this measure capturing the mismatch between the market

liquidity of assets and the funding liquidity of liabilities of a given bank—both its on– and

off–balance sheet (Columns 1–3) and on–balance sheet (Columns 4–6) versions.

4.2 Mechanisms and Heterogeneity

Asset versus Liability Side of Liquidity Creation. The results so far show that competitors

play a significant role in determining variations in liquidity mismatch policies of individual

banks. Nonetheless, peer influence can be concentrated or at least affect in a dissimilar way

liquidity created on the asset and liquidity sides of banks’ balance sheets. Berger, Bouwman,

Kick, and Schaeck (2016), for instance, show that capital support measures reduce banks’

asset-side liquidity creation while increasing by a similar magnitude the liquidity created on

the liability side. To better examine the mechanisms through which these adjustments operate,

I decompose aggregate liquidity creation into its individual elements (i.e., asset side, liability

side, and off–balance sheet liquidity creation—each divided by bank assets), and regress them

on peer banks’ corresponding component of liquidity creation.

The results reported in Tables 7 and OA10 indicate that peer effects are concentrated on

liquidity created on the asset side of banks’ balance sheets. Specifically, Table 7 considers

the cross-country OECD sample with annual frequency where the instrument is defined as the

foreign subsidiary’s parent asset or liability-side liquidity creation within each peer group. As

in Table 2, standard errors are robust to heteroskedasticity and within-peer-group dependence.
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Table 5: Peer effects in banks’ liquidity mismatch decisions – U.S. sample

Liquidity creation Liquidity creation
(on– and off–B/S) (on–B/S)

(1) (2) (3) (4) (5) (6)

Peers’ liquidity creation 0.085** 0.050** 0.040***
(on– and off–B/S) (2.399) (2.220) (2.955)
Peers’ liquidity creation 0.061*** 0.039*** 0.027***
(on–B/S) (2.754) (2.727) (3.130)

Peer group size 10 20 30 10 20 30
No. observations 14,407 14,407 14,407 14,407 14,407 14,407
No. banks 472 472 472 472 472 472
Bank characteristics Y Y Y Y Y Y
Peers avg. controls Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
First-stage KP F-stat 12.88*** 24.22*** 110.2*** 18.10*** 36.66*** 155.3***
First-stage instrument -0.002*** -0.003*** -0.005*** -0.002*** -0.003*** -0.004***

(-3.588) (-4.922) (-10.498) (-4.255) (-6.055) (-12.460)
Mean of dependent variable 0.474 0.474 0.474 0.367 0.367 0.367
The table reports two-stage least squares (2SLS) estimates of Model (1) using the quarterly U.S. sample of
listed banks and the Berger and Bouwman (2009) on– and off–balance sheet and on–balance sheet liquidity
creation measures divided by total assets as the dependent variables. The summary statistics are presented
in Table OA4 in the Online Appendix. The instrument is the Leary and Roberts (2014) lagged peer bank
average equity return shock. All coefficients are scaled by the corresponding variable’s standard deviation
and t-statistics (in parentheses) are robust to heteroskedasticity and within bank dependence. Peer groups are
defined as commercial banks operating in the United States in the same quarter grouped into a maximum of 10,
20, or 30 banks according to their size. Bank-specific characteristics include size, capital ratio, ROA, deposit
share, and NPL provisions. Peer banks’ average characteristics comprise the same set of bank-specific controls
but are computed as the average across all banks within a certain peer group, excluding bank i’s observation.
All control variables are lagged by one quarter. First-stage KP F-stat is the cluster-robust Kleibergen and
Paap (2006) F-statistic testing for weak instruments. Statistical significance at the 10%, 5%, and 1% levels is
denoted by *, **, and ***, respectively.

Instead, Table OA10 in the Online Appendix focuses on the U.S. sample with quarterly

frequency as in Table 5, where the instrument is the lagged peer bank average equity return

shock and the standard errors are clustered at the bank level. The reported estimates show

no statistically significant results for liability-side liquidity creation, a finding that is robust

irrespective of the sample, identification strategy, and peer group definition used. Table OA11

in the Online Appendix presents the results with total liquidity creation further decomposed

into its off–balance sheet component when using the quarterly U.S. sample. As with liability-side
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Table 6: Peer effects in banks’ liquidity mismatch decisions – LMI

LMIi LMIi
(on– and off–B/S) (on–B/S)

(1) (2) (3) (4) (5) (6)

Peers’ LMIi 0.212** 0.124*** 0.147**
(on– and off–B/S) (2.381) (2.934) (2.450)
Peers’ LMIi 0.200** 0.120*** 0.140**
(on–B/S) (2.445) (2.991) (2.538)

Peer group size 10 20 30 10 20 30
No. observations 9,960 9,960 9,960 9,960 9,960 9,960
No. banks 337 337 337 337 337 337
Bank characteristics Y Y Y Y Y Y
Peers avg. controls Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
First-stage KP F-stat 16.94*** 113.5*** 81.62*** 18.61*** 118.6*** 92.33***
First-stage instrument -0.001*** -0.003*** -0.002*** -0.001*** -0.003*** -0.002***

(-4.116) (-10.655) (-9.035) (-4.314) (-10.892) (-9.609)
Mean of dependent variable -0.449 -0.449 -0.449 -0.451 -0.451 -0.451
The table reports two-stage least squares (2SLS) estimates of Model (1) using the quarterly U.S. sample of
listed banks and the Bai, Krishnamurthy, and Weymuller (2018) on– and off–balance sheet and on–balance
sheet Liquidity Mismatch Index (LMI) as the dependent variables. I reverse the signs of the LMI and express
it as a share of total assets (LMIi) so that this measure is directly comparable to the Berger and Bouwman
(2009) indicator. The summary statistics are presented in Table OA4 in the Online Appendix. The instrument
is the Leary and Roberts (2014) lagged peer bank average equity return shock. All coefficients are scaled by the
corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to heteroskedasticity
and within bank dependence. Peer groups are defined as commercial banks operating in the United States
in the same quarter grouped into a maximum of 10, 20, or 30 banks according to their size. Bank-specific
characteristics include size, capital ratio, ROA, deposit share, and NPL provisions. Peer banks’ average
characteristics comprise the same set of bank-specific controls but are computed as the average across all
banks within a certain peer group, excluding bank i’s observation. All control variables are lagged by one
quarter. First-stage KP F-stat is the cluster-robust Kleibergen and Paap (2006) F-statistic testing for weak
instruments. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

liquidity creation, the results indicate that competitors’ influence also does not operate via

liquidity created off the balance sheet. Overall, consistent with Rajan (1994) and Uchida and

Nakagawa (2007), these findings suggest that collective risk-taking operates through liquidity

created on the asset side of banks’ balance sheets, of which lending is a key component.19

19Table OA12 in the Online Appendix splits the asset side-component of liquidity creation into its earning
asset and non-earning asset subcomponents and, in line with this finding, shows that peer effects are
concentrated on the earning assets subcomponent of liquidity creation.
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Table 7: Asset versus liability side of liquidity creation

Asset-side LC Liability-side LC
(1) (2) (3) (4) (5) (6)

Peers’ asset-side LC 0.047** 0.062*** 0.064**
(2.462) (3.007) (2.096)

Peers’ liability-side LC -0.004 0.029 0.048
(-0.119) (1.390) (1.470)

Peer group size 10 20 30 10 20 30
No. observations 10,575 13,023 13,954 10,575 13,023 13,954
No. banks 1,407 1,528 1,584 1,407 1,528 1,584
No. peer groups 141 80 59 141 80 59
Bank, peer, and country controls Y Y Y Y Y Y
Year and bank FE Y Y Y Y Y Y
First-stage KP F-stat 26.95*** 17.91*** 10.15*** 7.449*** 7.582*** 1.619
First-stage instrument 0.014*** 0.014*** 0.009*** 0.004*** 0.006*** 0.003

(5.191) (4.232) (3.185) (2.729) (2.754) (1.272)
Mean of dependent variable 0.154 0.165 0.169 0.150 0.148 0.147
This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the asset and liability-side components of the Berger and Bouwman (2009) on–balance sheet liquidity
creation (LC) measure divided by total assets as the dependent variables. All coefficients are scaled by the
corresponding variable’s standard deviation. t-statistics (in parentheses) are robust to heteroskedasticity and
within-peer-group dependence. Peer groups are defined as commercial banks operating in the same country
in the same year grouped into a maximum of 10, 20, or 30 banks according to their size (total assets). The
bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions) and country-level controls (GDP
per capita, GDP growth volatility, concentration, and prudential regulation intensity) are all defined in Table
1. Peer banks’ average characteristics comprise the same set of bank-specific controls but are computed as
the average across all banks within a certain peer group, excluding bank i’s observation. All control variables
are lagged by one period. First-stage KP F-stat is the cluster-robust Kleibergen and Paap (2006) F-statistic
testing for weak instruments. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and
***, respectively.

Cross-sectional Heterogeneity. What type of banks mimic their competitors? To examine

whether some financial institutions are more sensitive to their peers’ liquidity mismatch policies,

I split banks into two groups according to the median of the within-country-year distribution

of lagged values of bank-level measures capturing different dimensions of performance and

risk. These include the Z-score (distance to default) as in Dam and Koetter (2012) or Beck,

De Jonghe, and Schepens (2013), the Z-score’s individual components (capital ratio, ROA,

standard deviation of ROA), and banks’ non-interest income share.20 I then exploit the effect’s
20The Z-score can be interpreted as the number of standard deviations by which returns would have to

fall from the mean to eliminate all the equity of a bank, with a lower Z-score implying a higher probability of
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cross-sectional heterogeneity by interacting the main explanatory variable of interest, peers’

liquidity creation, with the two indicator variables (ILow and IHigh) associated with a given

bank-level measure. All models are estimated by 2SLS where the two endogenous variables

are the peer banks’ average liquidity creation interacted with the two indicator variables, and

the two instruments are the peers’ parents liquidity creation interacted with the same two

indicator variables—since each model now has two endogenous regressors, there are also two

excluded instruments and two separate first-stage models. To avoid redundancy, the results

reported are based on the benchmark peer group definition, where competitors are defined as

other commercial banks operating in the same country in the same year and grouped into a

local network of 20 banks according to their size.

The results reported in Table 8 show that the peer effects in banks’ liquidity mismatch

decisions are concentrated in banks that are ex ante riskier. Importantly, the two first-stage

regressions in each of the models also show that (i) the instruments are correlated with the

endogenous variables in a way that is consistent with what one would expect, and that (ii)

the estimates do not seem to suffer from a weak instruments problem, with F-statistics and

associated p-values computed following the procedure of Sanderson and Windmeijer (2016) to

check for weak instruments in settings with more than one endogenous variable. In detail,

this form of collective risk-taking behavior is not present in banks with ex ante higher profit

stability and lower probability of default. The peer effects of interest are also not statistically

significant for banks with higher capital ratios, a result consistent with theory showing that

high capital strengthens banks’ monitoring incentives (Mehran and Thakor, 2011) and lowers

asset-substitution moral hazard (Morrison and White, 2005). Similarly, in Albuquerque,

Cabral, and Guedes (2019) the incentive to use more relative performance evaluation and

thus invest in correlated projects leading to systemic risk also increases with bank leverage.

Finally, this finding also suggests that higher levels of funding liquidity risk are not being

default. In detail, the Z-score of bank i at time t is defined as the sum of return on assets (ROA) and the capital
ratio (equity to assets), all divided by the standard deviation of the ROA using a three-year rolling window.
This approach avoids the variation in Z-scores within banks over time to be exclusively driven by variation in
levels of profitability and capital. Furthermore, by not relying on the full sample period, the denominator is
no longer computed over different window lengths for different banks.
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compensated with higher capital ratios that could increase a bank’s probability of survival

during the crisis (Berger and Bouwman, 2013).

Bank Size and Coordinated Behavior. Table 9 examines in more detail the potential

channels driving the correlated balance sheet exposures. Specifically, banks are first classified as

small or large by splitting the within country-year distribution of banks’ total assets according

to the median. The peer averages are then constructed based on: (i) small banks mimicking

small banks and large banks mimicking large banks; or (ii) small banks mimicking large banks

and large banks mimicking small banks. This analysis is useful not only to shed light on

the potential mechanisms behind this type of coordinated behavior, but also to understand

whether these decisions are indeed likely to be strategic.

The results confirm that the size of competitors is a crucial determinant for individual

banks’ decision-making. Specifically, the coefficient estimates indicate that large and small

banks’ liquidity mismatch decisions are only sensitive to choices of their respective counterparts.21

In other words, as predicted by the theoretical literature on collective moral hazard due to the

LOLR bailout commitment (e.g., Acharya and Yorulmazer, 2007; Farhi and Tirole, 2012), larger

banks tend to mimic other larger banks, while smaller banks follow other smaller banks. The

results therefore suggest that learning (i.e., free-riding in information acquisition) is unlikely

to play a major role in this setting since small banks’ liquidity choices do not seem to be

affected by the respective decisions of large banks. This differs from the findings of Leary

and Roberts (2014) that consider a sample of listed non-financial firms in the United States

and show that peer firm relevance is driven by a leader-follower model in which small firms

are sensitive to large firms, but not vice versa. In contrast with other industries, however, the

institutional framework (e.g., existence of government guarantees) and regulatory environment

(e.g., strict regulations and guidelines on what the banks can and should do) of the banking
21In specifications with only one endogenous regressor (e.g., Columns 1 and 3 of Table 9), the Sanderson

and Windmeijer (2016) F-statistic is equal to the Kleibergen and Paap (2006) F-statistic I report in Tables 2
to 7. While the peer groups in Column (1) of Table 9 are defined in a different manner than in the baseline
analysis (that is, banks within a country-year pair split into two size groups, where each group can have any
number of banks versus banks within a country-year pair grouped into groups of 10, 20, and 30 banks of similar
size), it is reassuring that the coefficient estimate is similar in magnitude to those in Table 2.
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sector arguably make it less likely for rational “herding” driven by small banks’ uncertainty

regarding the optimal liquidity mismatch policy to occur.

Additionally, the estimate in Column (2) of Table 9 shows that such mimicking behavior

is relatively stronger among larger banks. This is consistent with large banks taking more risk

than small banks in equilibrium since they internalize that their decisions directly affect the

government’s optimal bailout policy (Dávila and Walther, 2018), but also with risk-taking being

driven by the presence of RPE in compensation schemes that tends to be more prevalent in

larger banks (Ilic, Pisarov, and Schmidt, 2017; Albuquerque, Cabral, and Guedes, 2019).22 This

finding is particularly important given that the trade-off between liquidity creation and fragility

is most consequential for large banks that create the most liquidity (Berger and Bouwman,

2009).

4.3 Collective Risk-taking and Financial Sector Stability

Asymmetric Behavior. To investigate the impact peer effects may have on financial sector

stability, I start by examining whether the response of individual banks to the liquidity

mismatch choices of competitors is asymmetric. In other words, this analysis aims to understand

if this type of mimicking behavior is stronger when peers are increasing liquidity transformation

risk rather than decreasing it. In fact, if banks follow competitors with the same intensity when

they are decreasing and increasing risk, the impact of such coordinated behavior on financial

stability is likely to be small. To answer this question, I interact the main explanatory variable

as well as the instrument with (i) a dummy variable equal to 1 if peers’ average liquidity

creation decreased from periods t − 1 to t, a 0 otherwise; and (ii) a dummy variable equal to

1 if peers’ average liquidity creation increased from periods t− 1 to t, and 0 otherwise.

22Dávila and Walther (2018) show theoretically that since risky choices by large banks also increase the
implicit bailout subsidy for the banking sector as a whole, small banks may also increase risk-taking beyond
what they would optimally choose in the absence of large banks. In contrast, Bonfim and Kim (2019) find
small banks actually decrease liquidity risk when large banks are increasing it, although this result is not
consistent across different specifications. Empirically, and after providing a rigorous econometric treatment
for the endogeneity of peer effects, I find no consistent evidence of strategic spillovers to small banks. In fact,
although positive in terms of magnitude, the coefficient estimate in Column 4 of Table 9 (capturing small banks
mimicking large banks) is statistically insignificant from zero.
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Table 9: Bank size and coordinated behavior

Liquidity creation Small → small Small → large
& large → large & large → small

(1) (2) (3) (4)

Peers’ LC 0.084*** 0.035
(6.380) (1.392)

Peers’ LC × ISmall 0.076*** 0.015
(3.942) (0.275)

Peers’ LC × ILarge 0.093*** 0.055
(5.653) (0.818)

No. observations 14,099 14,099 14,202 14,202
No. banks 1,587 1,587 1,601 1,601
No. peer groups 60 60 60 60
Bank, peer, and country controls Y Y Y Y
Year and bank FE Y Y Y Y
Mean of dependent variable 0.310 0.310 0.312 0.312

First-stage regressions Peers’ Peers’ Peers’ Peers’ Peers’ Peers’
LC LC × LC × LC LC × LC ×

ISmall ILarge ISmall ILarge

(1.1) (2.1) (2.2) (3.1) (4.1) (4.2)
First-stage intrument: 0.026*** 0.006
Peers’ parents LC (5.281) (1.397)
First-stage instrument 1: 0.020*** 0.003 0.008 0.002
Peers’ parents LC × ISmall (3.936) (1.157) (1.561) (0.676)
First-stage instrument 2: 0.004 0.027*** -0.001 0.001
Peers’ parents LC × ILarge (0.983) (3.279) (-0.327) (0.238)
First-stage SW F-Stat 27.89*** 16.75*** 10.06*** 1.951 0.114 0.076
This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bouwman (2009) on–balance sheet liquidity creation measure (LC) divided by total assets as
the dependent variable. Table OA2 in the Online Appendix presents the weights given to the different balance
sheet items when computing this measure. Banks are split into two groups (ISmall and ILarge) according
to the median of the within-country-year distribution of banks’ total assets. The peer averages are then
constructed based on: (i) small banks mimicking small banks and large banks mimicking large banks; or (ii)
small banks mimicking large banks and large banks mimicking small banks. All coefficients are scaled by the
corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to heteroskedasticity and
within-peer-group dependence. The bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions)
and country-level controls (GDP per capita, GDP growth volatility, concentration, and prudential regulation
intensity) are all defined in Table 1. Peer banks’ average characteristics comprise the same set of bank-specific
controls in a given specification, but are computed as the average across all banks within a certain peer group,
excluding bank i. All control variables are lagged by one period. First-stage SW F-stat is the Sanderson and
Windmeijer (2016) conditional first-stage F-statistic testing for weak instruments. Statistical significance at
the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table 10: Asymmetric behavior

Liquidity creation (1) (2) (3)

Peers’ LC × ILC↑ 0.069*** 0.086*** 0.104***
(3.172) (4.109) (4.590)

Peers’ LC × ILC↓ 0.030 0.046 0.043
(0.746) (1.630) (0.901)

No. observations 10,575 13,023 13,954
No. banks 1,407 1,528 1,584
No. peer groups 141 80 59
Bank, peer, and country controls Y Y Y
Year and bank FE Y Y Y
Mean of dependent variable 0.304 0.313 0.316

First-stage regressions Peers’ Peers’ Peers’ Peers’ Peers’ Peers’
LC × LC × LC × LC × LC × LC ×
ILC↑ ILC↓ ILC↑ ILC↓ ILC↑ ILC↓

(1.1) (1.2) (2.1) (2.2) (3.1) (3.2)
First-stage instrument 1: 0.016*** -0.005 0.014** -0.001 0.016** -0.003
Peers’ parents LC × ILC↑ (3.357) (-1.505) (2.504) (-0.346) (2.463) (-0.568)
First-stage instrument 2: -0.000 0.016*** 0.001 0.019*** -0.000 0.017***
Peers’ parents LC × ILC↓ (-0.006) (3.079) (0.189) (3.368) (-0.051) (2.862)
First-stage SW F-Stat 16.96*** 17.18*** 10.19*** 17.08*** 8.39*** 14.99***
This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bouwman (2009) on–balance sheet liquidity creation measure (LC) divided by total assets as
the dependent variable. Table OA2 in the Online Appendix presents the weights given to the different balance
sheet items when computing this measure. The main explanatory variable capturing the average liquidity
created by competitors is interacted with (i) a dummy variable ILC↑ equal to 1 if peers’ average liquidity
creation increased from periods t-1 to t, a 0 otherwise; and (ii) a dummy variable ILC↓ equal to 1 if peers’
average liquidity creation decreased from periods t-1 to t, and 0 otherwise. All coefficients are scaled by the
corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to heteroskedasticity and
within-peer-group dependence. The bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions)
and country-level controls (GDP per capita, GDP growth volatility, concentration, and prudential regulation
intensity) are all defined in Table 1. Peer banks’ average characteristics comprise the same set of bank-specific
controls in a given specification, but are computed as the average across all banks within a certain peer group,
excluding bank i. All control variables are lagged by one period. First-stage SW F-stat is the Sanderson and
Windmeijer (2016) conditional first-stage F-statistic testing for weak instruments. Statistical significance at
the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

Table 10 reports the findings. The results show that correlated liquidity transformation

activities do work asymmetrically, with individual banks mimicking their respective peers only

when competitors are increasing risk. Further validating the paper’s identification strategy,

the instruments are also correlated with the endogenous variables in the way one would expect:
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while local banks behave strategically and mimic their respective peers only when competitors

are increasing liquidity creation, a foreign-owned subsidiary considers the liquidity mismatch

policy of its parent when the parent is both increasing and decreasing liquidity risk.23

Overall, the results suggest that banks’ liquidity policies are strategically determined

according to the behavior of their competitors, which can ultimately lead to financial instability

due to increased liquidity transformation risk in the banking system. Diamond and Rajan

(2001) and Allen and Gale (2004), for instance, argue that banks’ liquidity transformation

activities are a fundamental driver of fragility and suggest that bank failures are more likely to

occur when the level of liquidity creation is high. Rajan (1994) and Acharya and Naqvi (2012)

find that banks creating excessive liquidity also tend to engage in lending practices leading

to asset bubbles, which ultimately result in future financial instability. Berger and Bouwman

(2017) also show that banking crises in the United States have been preceded by periods of

abnormal liquidity creation. In a different context, Hong, Huang, and Wu (2014) show that

systemic liquidity risk as measured by TED spreads was a major predictor of bank failures in

2009 and 2010, while Cai, Eidam, Saunders, and Steffen (2018) analyze syndicated loans to

firms in the United States and show that a larger overlap of banks’ loan portfolio makes them

greater contributors to systemic risk and that interconnectedness increases aggregate systemic

risk during recessions.

Peer effects and Bank Risk. As a final step, I examine the consequences of strategic liquidity

mismatch choices explicitly—that is, whether such correlated balance sheet exposures have an

adverse effect on both individual banks’ default risk and overall systemic risk. Compared with

Model (1), the relationship between the liquidity mismatch position of bank i and that of

its peers is now allowed to vary not only across countries, but also over time following the
23These findings also help to reassure that the baseline results are unlikely to be driven by changes in

prudential regulations introduced after the crisis or by the Basel’s first guidelines on the new liquidity regulations
issued in 2010. First, changes in the intensity of capital requirements, interbank exposure limits, concentration
limits, LTV ratios limits, and reserve requirements are explicitly controlled for in the model following Cerutti,
Correa, Fiorentino, and Segalla (2017). Second, these changes in regulation would imply that all banks adjust
their portfolio towards reducing liquidity transformation risk. However, as the results in Table 10 show, such
collective strategic behavior is asymmetric, with individual banks mimicking their respective peers only when
competitors are increasing funding liquidity risk.
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framework of Albuquerque, Cabral, and Guedes (2019) and Denbee, Julliard, Li, and Yuan

(2018). To capture time and country-varying peer effects in liquidity mismatch decisions, βj,t,

I shock the average peer effect in the overall sample with a country-year indicator variable Ij,t

and estimate the following model separately for each country-year combination:

yi,j,t = µi + (β0 + β1Ij,t)ȳ−i,j,t + λ′X̄−i,j,t−1 + γ′Xi,j,t−1 + δ′Zj,t−1 + vt + εi,j,t (4)

where i, j, and t correspond to bank, country, and year, respectively.24 The estimated

coefficient on the peer effect of interest, β̂j,t, is then used to run the following specification

to gauge the impact of peer effects in liquidity choices on financial stability:

STAi,j,t = κ+ δβ̂j,t + γ′Xi,j,t−1 + η′Zj,t−1 + µi + vt + ui,j,t (5)

where STAi,j,t is either the distance-to-default (ln[Z-score]) when using a three or five-year

window to compute the standard deviation of ROA, or the marginal expected shortfall—MES

(Acharya, Pedersen, Philippon, and Richardson, 2017) and systemic capital shortfall—SRISK

(Acharya, Engle, and Richardson, 2012; Brownlees and Engle, 2017). MES is computed using

the opposite of returns such that the higher a bank’s MES is, the higher its systemic risk

contribution. The market is defined as the country-specific banking sector equity market.

SRISK corresponds to the expected bank i’s capital shortage (in billion USD) during a period

of system distress and severe market decline. Following Acharya, Engle, and Richardson (2012),

the long-run MES is approximated as 1-exp(-18*MES) where MES is the one day loss expected

if market returns are less than -2%. Unlike MES, SRISK is a also function of the bank’s book

value of debt, its market value of equity and a minimum capital ratio. To ensure comparability

across countries, I follow Engle, Jondeau, and Rockinger (2015) and set the prudential capital

ratio to 4% for banks reporting under IFRS and to 8% for all other accounting standards,

including U.S. GAAP.

24For each of the separate regressions corresponding to each country-year combination Ij,t, there are again
two endogenous regressors and two excluded instruments. I use the estimated coefficient on the peer effect
for a given country-year pair as a regressor to explain bank risk if and only if the Sanderson and Windmeijer
(2016) conditional first-stage F-statistics are above the weak instrument critical values proposed by Stock and
Yogo (2005) based on size distortions of the associated Wald statistic considering a 25% maximal IV size.
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The results reported in Tables OA13 and OA14 provide direct and thus novel empirical

evidence that strategic complementarity in banks’ liquidity mismatch policies decrease the

stability of the financial system. In fact, as initially hypothesized, the estimated coefficients

indicate that peer effects in liquidity mismatch policies are positively associated with individual

banks’ default risk and overall systemic risk. Importantly, this effect is both statistically

and economically significant. Irrespective of the multitude of channels that have been put

forward to explain this type of risk-taking behavior, these findings highlight the need of

having a macroprudential tool that minimizes the propensity for banks to create excessive

liquidity and collectively underprice liquidity risk. Such a binding requirement would allow for

more efficient systemic liquidity risk management that would ultimately reduce the potential

taxpayer burden.

5 Conclusion

The 2007–2009 financial crisis distinctly exposed the negative implications of excessive liquidity

transformation for financial sector stability and the macroeconomy. This outcome was achieved

in part through banks’ correlated exposures. Ultimately, liquidity mismatch decisions of

individual banks spilled over to other financial institutions and markets, exacerbating losses and

overall liquidity stress. Such systemic liquidity risk was, judging by the extent of government

intervention during the crisis, clearly understated by both the private and public sectors. In

this regard, this paper examines empirically the extent to which banks’ liquidity transformation

activities are affected by the choices of their competitors and the impact of these collective

risk-taking decisions on financial stability.

Using a novel identification strategy exploiting the presence of partially overlapping peer

groups, I show that financial institutions incorporate their peers’ liquidity mismatch decisions

when determining their own. This strategic behavior is driven by liquidity created on the

asset side, of which lending is a key component, and is concentrated in ex ante riskier banks.

With respect to the consequences of such strategic behavior for the financial system, I first
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show that the response of individual banks to the liquidity mismatch choices of competitors

is asymmetric, with individual banks mimicking their peers only when competitors increase

liquidity transformation risk. I then show that peer effects in financial institutions’ liquidity

mismatch policies increase both individual banks’ default risk and overall systemic risk. This

effect is both statistically and economically significant, highlighting the importance of explicitly

regulating systemic liquidity risk from a macroprudential perspective.

In fact, while the Basel III liquidity requirements, combined with improved supervision,

should help to strengthen individual banks’ funding structure and thus enhance banking sector

stability, these liquidity standards are fundamentally microprudential in nature.25 Despite the

proposals for macroprudential liquidity regulation such as time-varying LCR and NSFR ratios

or a macroprudential liquidity buffer where each bank would be required to hold assets that are

systemically-liquid (IMF, 2011), policymakers and regulators have yet to establish a concise

macroprudential framework that mitigates the possibility of a simultaneous liquidity need by

financial institutions. Since information spillovers are a defining characteristic of panics due to

financial agents’ imperfect knowledge regarding common exposures and given that, as shown

in this paper, these information spillovers between banks do occur, a static and time-invariant

microprudential liquidity requirement that mainly depends on individual banks’ idiosyncratic

risk (rather than system-wide conditions) may not be suitable to prevent a systemic liquidity

crisis. As argued by Dewatripont, Rochet, and Tirole (2010), “a 1 percent probability of

failure means either that 1 percent of the banks fail every year or, alternatively, that the whole

banking system fails every hundred years—quite distinct outcomes. Therefore it is crucial for

regulators to find ways of discouraging herding behavior by banks.”

25Most developed economies have recently introduced formal bank bail-in regimes that involve the
participation of bank creditors in bearing the costs of restoring a distressed bank and that include heavy
restrictions on taxpayer support. Despite the potentially negative but limited short-term costs of bail-ins for
the real economy (Beck, Da-Rocha-Lopes, and Silva, 2018), this new resolution tool represents an important step
to mitigate the incentives for collective risk-taking behavior. On the other hand, while the Financial Stability
Board (FSB) issued in 2009 the core principles for the design of pay structures currently being implemented in
different countries, Albuquerque, Cabral, and Guedes (2019) argue that these largely omit the role RPE plays
in creating systemic risk.
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Online Appendix

Strategic Liquidity Mismatch
and Financial Sector Stability

André F. Silva

Federal Reserve Board

A. Computation of the stock return shock

To extract the idiosyncratic component of stock returns, I follow Leary and Roberts (2014) by

using, in addition to the market factor traditional in asset pricing models, an industry factor

to remove any common variation in returns across the same peer group. The model is specified

as follows:

Ri,j,t = αi,j,t + λi,j,t (RMj,t −Rfj,t) + φi,j,t

(
R̄−i,j,t −Rfj,t

)
+ εi,j,t (6)

where Ri,j,t refers to the stock return for bank i in country j over period t, (RMj,t −Rfj,t) is

the excess market returns (i.e., market factor), and
(
R̄−i,j,t −Rfj,t

)
is the excess return on an

equally-weighted portfolio excluding bank i’s return (i.e., industry factor). The intercept αi,j,t

measures the mean monthly abnormal return. I use the one-month U.S. Treasury bill rate to

proxy for the risk-free rate and the MSCI equity market index of each country to proxy for

1



their respective market factor. The model is estimated for each bank in a rolling regression

using a minimum of 24 and a maximum of 60 past monthly returns. In detail, to compute

expected and idiosyncratic returns of bank i in month m of year t, I first estimate equation (6)

using monthly returns from month m of year t − 5 to month m + 12 of year t − 1. Using the

estimated coefficients and the factor returns from bank i in month m of year t, the idiosyncratic

return component, η̂i,j,t, is computed as the difference between the actual return Ri,j,t and the

expected return R̂i,j,t:

R̂i,j,t = α̂i,j,t + λ̂i,j,t (RMj,t −Rfj,t) + φ̂i,j,t

(
R̄−i,j,t −Rfj,t

)
(7)

and,

η̂i,j,t = Ri,j,t − R̂i,j,t (8)

The idiosyncratic return obtained from the above model is therefore the return of the

bank after removing all known sources of systematic variation. Thus, the residuals obtained

from (6) should be purely bank specific and hence free from any commonalities across the

bank. To ensure consistency with the frequency of accounting data, I compound the monthly

idiosyncratic return component to have an annual measure. This quantity is then averaged

over the peer banks for each country j in each year t, and the exogenous source of variation

for peer banks’ liquidity choices is the lagged average peer bank equity return shock.

B. Additional tables and results

2



Table OA1: Reported peer groups of the largest U.S. banks

Wells JPMorgan Citigroup U.S. PNC BNY State Capital
Fargo Chase Bancorp Mellon Street One

American Express X X X X
Bank of America X X X X X X
BNY Mellon X X X
BB&T X X X X
Capital One X X X X
Citigroup X X X
Fifth Third X X X X
Goldman Sachs X X X X
JPMorgan Chase X X X X X X X
KeyCorp X X X
Morgan Stanley X X X X X
PNC X X X X X X
Regions X X X X
State Street X X
SunTrust X X X X
U.S. Bancorp X X X X X X
Wells Fargo X X X X X X X
AIG X
MetLife X
Prudential X X
M&T Bank X
BlackRock X X
Franklin Resources X X
Charles Schwab X
Northern Trust X X
Ameriprise X
Discover X
Total No. Peers 16 6 13 9 11 11 12 12

This table presents the peer groups of the largest banks operating in the Unites States in 2016 as reported
in their publicly-available 2017 proxy statements. These comprise both financial performance peers and labor
market peers. The former includes other banks directly competing for financial capital and customers, and that
match the respective bank’s scope, scale, business model/mix, and geography. The latter also includes banks
that directly compete for executive talent.
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Table OA3: Additional summary statistics – OECD sample
Variables N Mean SD P25 P50 P75
Peer group size: 10 banks
Peers’ liquidity creation 10,575 0.298 0.137 0.221 0.308 0.388
Peers’ NSFRi 10,575 1.014 0.272 0.830 0.967 1.151
Peers’ size 10,575 8.299 2.018 6.675 8.248 9.775
Peers’ capital ratio 10,575 0.102 0.049 0.066 0.093 0.124
Peers’ ROA 10,575 0.006 0.007 0.003 0.006 0.010
Peers’ deposit share 10,575 0.569 0.121 0.486 0.574 0.657
Peers’ NPL provisions 10,575 0.004 0.004 0.001 0.003 0.006
Peers’ liquidity ratio 10,575 0.079 0.059 0.033 0.059 0.109
Peers’ cost-to-income 10,575 0.626 0.165 0.548 0.630 0.714
Peers’ non-interest income share 10,575 0.377 0.132 0.288 0.371 0.453

Peer group size: 20 banks
Peers’ liquidity creation 13,023 0.308 0.121 0.237 0.319 0.388
Peers’ NSFRi 13,023 1.013 0.223 0.855 0.984 1.128
Peers’ size 13,023 8.304 1.877 6.872 8.368 9.676
Peers’ capital ratio 13,023 0.102 0.042 0.074 0.096 0.121
Peers’ ROA 13,023 0.006 0.006 0.003 0.006 0.010
Peers’ deposit share 13,023 0.575 0.110 0.499 0.577 0.649
Peers’ NPL provisions 13,023 0.004 0.004 0.002 0.003 0.006
Peers’ liquidity ratio 13,023 0.079 0.058 0.035 0.059 0.109
Peers’ cost-to-income 13,023 0.631 0.142 0.570 0.635 0.712
Peers’ non-interest income share 13,023 0.371 0.114 0.295 0.372 0.442

Peer group size: 30 banks
Peers’ liquidity creation 13,954 0.311 0.115 0.240 0.323 0.388
Peers’ NSFRi 13,954 1.007 0.206 0.870 0.981 1.105
Peers’ size 13,954 8.291 1.758 7.078 8.262 9.594
Peers’ capital ratio 13,954 0.102 0.039 0.076 0.096 0.121
Peers’ ROA 13,954 0.006 0.006 0.003 0.006 0.010
Peers’ deposit share 13,954 0.579 0.107 0.505 0.577 0.651
Peers’ NPL provisions 13,954 0.004 0.004 0.002 0.003 0.006
Peers’ liquidity ratio 13,954 0.078 0.056 0.036 0.059 0.108
Peers’ cost-to-income 13,954 0.634 0.134 0.576 0.642 0.711
Peers’ non-interest income share 13,954 0.370 0.108 0.297 0.377 0.433

This table presents summary statistics for the variables in the cross-country sample that includes 1,584
commercial banks operating in OECD countries from 1999 to 2014. Liquidity creation (LC) is the Berger
and Bouwman (2009) on–balance sheet liquidity creation measure divided by total assets. NSFRi is the
inverse of the Net Stable Funding Ratio. Table OA2 presents the weights given to the different balance
sheet items when computing both measures. Bank-level characteristics include size (ln[total assets]),
capital ratio (equity/assets), ROA (net income/assets), deposit share (deposits/assets), NPL provisions
(loan loss provisions/assets), liquidity ratio (liquid assets/total assets), cost-to-income ratio (non-interest
expense/gross revenues), and non-interest income share (non-interest income/total income). Peer banks’
average characteristics are computed as the average across all banks within a certain peer group, excluding
bank i. Peer groups are defined as commercial banks operating in the same country in the same year grouped
into a maximum of 10, 20, or 30 banks according to their size.
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Table OA4: Summary statistics – U.S. sample
Variables N Mean SD P25 P50 P75
Liquidity mismatch indicators:
Liquidity creation – on– and off–B/S 14,407 0.474 0.183 0.354 0.477 0.596
Liquidity creation – on–B/S 14,407 0.367 0.150 0.277 0.375 0.469
Liquidity creation – asset side 14,407 0.144 0.149 0.051 0.151 0.244
Liquidity creation – liability side 14,407 0.224 0.085 0.167 0.222 0.282
Liquidity creation – off–B/S 14,407 0.105 0.058 0.063 0.093 0.134
LMIi – on– and off–B/S 9,960 -0.449 0.161 -0.549 -0.465 -0.360
LMIi – on–B/S 9,960 -0.451 0.158 -0.549 -0.465 -0.362

Bank-level characteristics:
Size 14,407 14.38 1.343 13.44 14.12 15.03
Capital ratio 14,407 0.095 0.022 0.080 0.092 0.106
ROA 14,407 0.005 0.008 0.002 0.005 0.009
Deposit share 14,407 0.783 0.082 0.733 0.797 0.843
NPL provisions 14,407 0.003 0.005 0.001 0.001 0.003

This table presents summary statistics for the main variables in the quarterly U.S. sample that includes 472
listed commercial banks operating in the United States from 1999:Q1 to 2014:Q4. Liquidity creation (LC) is
the Berger and Bouwman (2009) on– and off–balance sheet and on–balance sheet liquidity creation measures
divided by total assets. LMI is the Bai, Krishnamurthy, and Weymuller (2018) Liquidity Mismatch Index. I
reverse the signs of the LMI and express it as a share of total assets (LMIi) so that this measure is directly
comparable to the Berger and Bouwman (2009) indicator. Bank-level characteristics include size (ln[total
assets]), capital ratio (equity/assets), ROA (net income/assets), deposit share (deposits/assets), and NPL
provisions (loan loss provisions/assets).
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Table OA5: Peer effects in banks’ liquidity mismatch decisions – standard errors

Liquidity creation (1) (2) (3) (4) (5) (6)

Panel A: Standard errors clustered at the peer group level

Peers’ liquidity creation 0.055*** 0.050*** 0.069*** 0.062*** 0.088*** 0.081***
(2.905) (2.478) (4.370) (3.648) (4.946) (4.031)
[10,575] [10,575] [13,023] [13,023] [13,954] [13,954]

Panel B: Standard errors clustered at the bank level

Peers’ liquidity creation 0.055*** 0.050*** 0.069*** 0.062*** 0.088*** 0.081***
(3.101) (2.625) (4.703) (3.955) (5.712) (4.587)
[10,575] [10,575] [13,023] [13,023] [13,954] [13,954]

Panel C: Heteroscedasticity-consistent standard errors

Peers’ liquidity creation 0.055*** 0.050*** 0.069*** 0.062*** 0.088*** 0.081***
(3.755) (3.167) (6.311) (5.203) (8.031) (6.298)
[10,575] [10,575] [13,023] [13,023] [13,954] [13,954]

Peer group size 10 10 20 20 30 30
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bowman (2009) on–balance sheet liquidity creation measure divided by total assets as the
dependent variable. Table OA2 presents the weights given to the different balance sheet items when computing this
measure. All coefficients are scaled by the corresponding variable’s standard deviation. t-statistics are reported
in parentheses and the no. of observations in brackets. Peer groups are defined as commercial banks operating
in the same country in the same year grouped into a maximum of 10, 20, or 30 banks according to their size.
The bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions) and country-level controls (GDP
per capita, GDP growth volatility, concentration, and prudential regulation intensity) are all defined in Table 1.
Additional bank and country controls include banks’ liquidity ratio, cost-to-income ratio, and non-interest income
share, as well as global integration, deposit insurance, and IFRS. Peer banks’ average characteristics comprise the
same set of bank-specific controls in a given specification, but are computed as the average across all banks within
a certain peer group, excluding bank i. All control variables are lagged by one period. Statistical significance at
the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table OA6: Peer effects in banks’ liquidity mismatch decisions – OLS estimates

Liquidity creation (1) (2) (3) (4) (5) (6)

Peers’ liquidity creation 0.029*** 0.028*** 0.046*** 0.044*** 0.056*** 0.054***
(6.916) (6.956) (8.424) (8.890) (8.324) (8.786)

Peers’ size 0.008 0.010 0.008 0.008 0.005 0.007
(1.044) (1.135) (0.767) (0.971) (0.544) (0.667)

Peers’ capital ratio 0.000 0.000 0.009 0.008 0.013* 0.012*
(0.005) (-0.009) (1.379) (1.272) (1.691) (1.796)

Peers’ ROA 0.003 -0.001 -0.002 -0.004 0.004 0.003
(0.939) (-0.198) (-0.578) (-1.144) (0.759) (0.769)

Peers’ deposit share 0.001 0.002 -0.004 -0.001 0.001 0.004
(0.244) (0.532) (-0.685) (-0.158) (0.211) (0.611)

Peers’ NPL provisions 0.002 0.000 -0.001 -0.002 0.002 0.002
(0.695) (0.020) (-0.377) (-0.552) (0.521) (0.668)

Peers’ liquidity ratio 0.004 0.002 0.004
(1.231) (0.517) (0.814)

Peers’ cost-to-income -0.005 -0.003 0.000
(-1.524) (-0.826) (-0.028)

Peers’ non-interest income share 0.009*** 0.010*** 0.011***
(2.742) (2.734) (2.696)

Peer group size 10 10 20 20 30 30
No. observations 10,575 10,575 13,023 13,023 13,954 13,954
No. banks 1,407 1,407 1,528 1,528 1,584 1,584
No. peer groups 141 141 80 80 59 59
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
Mean of dependent variable 0.304 0.304 0.313 0.313 0.316 0.316

This table reports OLS estimates of Model (1) using the cross-country OECD sample and the Berger and Bowman
(2009) on–balance sheet liquidity creation measure divided by total assets as the dependent variable. Table OA2
presents the weights given to the different balance sheet items when computing this measure. All coefficients
are scaled by the corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to
heteroscedasticity and within-peer-group dependence. Peer groups are defined as commercial banks operating
in the same country in the same year grouped into a maximum of 10, 20, or 30 banks according to their size.
The bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions) and country-level controls (GDP
per capita, GDP growth volatility, concentration, and prudential regulation intensity) are all defined in Table
1. Additional bank and country controls include banks’ liquidity ratio, cost-to-income ratio, and non-interest
income share, as well as global integration, deposit insurance, and IFRS. Peer banks’ average characteristics
comprise the same set of bank-specific controls in a given specification, but are computed as the average across
all banks within a certain peer group, excluding bank i. All control variables are lagged by one period. Statistical
significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table OA7: Peer effects in banks’ liquidity mismatch decisions – robustness tests A

Liquidity creation (1) (2) (3) (4) (5) (6)

Panel A: Alternative peer group sizes

Peers’ liquidity creation 0.040* 0.036* 0.073*** 0.067** 0.104*** 0.096***
(1.899) (1.682) (3.083) (2.570) (5.817) (4.931)
[7,329] [7,329] [12,198] [12,198] [14,492] [14,492]

Peer group size 5 5 15 15 50 50

Panel B: Do not consider a foreign parent if its subsidiary is too small or too large

(i) Do not exclude foreign parents

Peers’ liquidity creation 0.058*** 0.052** 0.064*** 0.056*** 0.091*** 0.085***
(3.337) (2.913) (4.053) (3.271) (4.443) (3.540)
[12,066] [12,066] [13,887] [13,887] [14,438] [14,438]

(ii) Exclude foreign parents if subsidiary is less than 1% or more than 25% of its size

Peers’ liquidity creation 0.055*** 0.050** 0.070*** 0.065*** 0.089*** 0.083***
(2.789) (2.417) (4.505) (3.796) (5.498) (4.472)
[10,343] [10,343] [12,967] [12,967] [13,895] [13,895]

(iii) Exclude foreign parents if subsidiary is less than 10% or more than 50% of its size

Peers’ liquidity creation 0.079*** 0.082*** 0.091*** 0.090*** 0.096*** 0.095***
(2.864) (3.053) (6.639) (6.385) (5.690) (4.690)
[3,731] [3,731] [6,081] [6,081] [7,893] [7,893]

Peer group size 10 10 20 20 30 30
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bowman (2009) on–balance sheet liquidity creation measure divided by total assets as the
dependent variable. Table OA2 presents the weights given to the different balance sheet items when computing
this measure. All coefficients are scaled by the corresponding variable’s standard deviation and t-statistics (in
parentheses) are robust to heteroscedasticity and within-peer-group dependence. The no. of observations are
reported in brackets. Peer groups are defined as commercial banks operating in the same country in the same year
grouped into a maximum of 5, 15, 10, 20, 30, or 50 banks according to their size. The bank-specific (size, capital
ratio, ROA, deposit share, and NPL provisions) and country-level controls (GDP per capita, GDP growth volatility,
concentration, and prudential regulation intensity) are all defined in Table 1. Additional bank and country controls
include banks’ liquidity ratio, cost-to-income ratio, and non-interest income share, as well as global integration,
deposit insurance, and IFRS. Peer banks’ average characteristics comprise the same set of bank-specific controls in
a given specification, but are computed as the average across all banks within a certain peer group, excluding bank
i. All control variables are lagged by one period. Statistical significance at the 10%, 5%, and 1% levels is denoted
by *, **, and ***, respectively.
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Table OA8: Peer effects in banks’ liquidity mismatch decisions – robustness tests B

NSFRi (1) (2) (3) (4) (5) (6)

Panel A: NSFR as liquidity mismatch indicator

Peers’ NSFRi 0.223*** 0.225*** 0.151*** 0.149*** 0.129*** 0.129***
(2.668) (2.645) (3.011) (2.834) (3.428) (3.378)
[10,575] [10,575] [13,023] [13,023] [13,954] [13,954]

Liquidity creation

Panel B: Exclude banks operating in the US

Peers’ liquidity creation 0.063*** 0.059*** 0.080*** 0.074*** 0.103*** 0.096***
(2.951) (2.652) (4.569) (4.004) (5.192) (4.447)
[9,487] [9,487] [11,481] [11,481] [12,192] [12,192]

Panel C: Exclude foreign-owned subsidiaries

Peers’ liquidity creation 0.046*** 0.042** 0.067*** 0.060*** 0.087*** 0.078***
(2.870) (2.507) (4.608) (3.955) (5.314) (4.165)
[7,700] [7,700] [9,829] [9,829] [10,693] [10,693]

Peer group size 10 10 20 20 30 30
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the NSFRi (inverse of the Net Stable Funding Ratio) and the Berger and Bowman (2009) on–balance sheet
liquidity creation measure divided by total assets as the dependent variables. Table OA2 presents the weights
given to the different balance sheet items when computing this measure. All coefficients are scaled by the
corresponding variable’s standard deviation and t-statistics (in parentheses) are robust to heteroscedasticity and
within-peer-group dependence. The no. of observations are reported in brackets. Peer groups are defined as
commercial banks operating in the same country in the same year grouped into a maximum of 10, 20, or 30
banks according to their size. The bank-specific (size, capital ratio, ROA, deposit share, and NPL provisions)
and country-level controls (GDP per capita, GDP growth volatility, concentration, and prudential regulation
intensity) are all defined in Table 1. Additional bank and country controls include banks’ liquidity ratio,
cost-to-income ratio, and non-interest income share, as well as global integration, deposit insurance, and IFRS.
Peer banks’ average characteristics comprise the same set of bank-specific controls in a given specification, but
are computed as the average across all banks within a certain peer group, excluding bank i. All control variables
are lagged by one period. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***,
respectively.
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Table OA9: Peer effects in banks’ liquidity mismatch decisions – robustness tests C

Liquidity creation (1) (2) (3) (4) (5) (6)

Panel A: Lagged peers banks’ liquidity creation

Peers’ liquidity creation 0.061*** 0.058** 0.074*** 0.067*** 0.098*** 0.094***
(2.895) (2.568) (3.997) (3.212) (6.283) (5.690)
[10,371] [10,371] [12,873] [12,873] [13,876] [13,876]

Panel B: No winsorizing of control variables

Peers’ liquidity creation 0.056*** 0.052** 0.070*** 0.064*** 0.089*** 0.082***
(2.956) (2.529) (4.474) (3.745) (5.017) (4.082)
[10,575] [10,575] [13,023] [13,023] [13,954] [13,954]

Panel C: Drop banks with asset growth above 75% in any of the years

Peers’ liquidity creation 0.065*** 0.059*** 0.065*** 0.058*** 0.075*** 0.065***
(3.054) (2.622) (4.088) (3.338) (3.980) (3.004)
[8,169] [8,169] [10,043] [10,043] [10,767] [10,767]

Peer group size 10 10 20 20 30 30
Bank and country controls Y Y Y Y Y Y
Additional controls N Y N Y N Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y

This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the Berger and Bowman (2009) on–balance sheet liquidity creation measure divided by total assets as the
dependent variable. Table OA2 presents the weights given to the different balance sheet items when computing
this measure. All coefficients are scaled by the corresponding variable’s standard deviation and t-statistics (in
parentheses) are robust to heteroscedasticity and within-peer-group dependence. The no. of observations are
reported in brackets. Peer groups are defined as commercial banks operating in the same country in the same
year grouped into a maximum of 10, 20, or 30 banks according to their size. The bank-specific (size, capital ratio,
ROA, deposit share, and NPL provisions) and country-level controls (GDP per capita, GDP growth volatility,
concentration, and prudential regulation intensity) are all defined in Table 1. Additional bank and country controls
include banks’ liquidity ratio, cost-to-income ratio, and non-interest income share, as well as global integration,
deposit insurance, and IFRS. Peer banks’ average characteristics comprise the same set of bank-specific controls in
a given specification, but are computed as the average across all banks within a certain peer group, excluding bank
i. All control variables are lagged by one period. Statistical significance at the 10%, 5%, and 1% levels is denoted
by *, **, and ***, respectively.
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Table OA10: Asset versus liability side of liquidity creation – U.S. sample

Asset-side LC Liability-side LC
(1) (2) (3) (4) (5) (6)

Peers’ asset-side LC 0.051*** 0.036** 0.032***
(2.631) (2.387) (2.841)

Peers’ liability-side LC -0.028 -0.030 -0.131
(-0.925) (-0.987) (-0.599)

Peer group size 10 20 30 10 20 30
No. observations 14,407 14,407 14,407 14,407 14,407 14,407
No. banks 472 472 472 472 472 472
Bank and peer controls Y Y Y Y Y Y
Quarter and bank FE Y Y Y Y Y Y
First-stage KP F-stat 30.27*** 55.02*** 182.0*** 3.570* 7.579*** 0.527
First-stage instrument -0.003*** -0.003*** -0.004*** 0.001* 0.001*** 0.000

(-5.502) (-7.418) (-13.492) (1.890) (2.753) (0.726)
Mean of dependent variable 0.144 0.144 0.144 0.224 0.224 0.224
The table reports two-stage least squares (2SLS) estimates of Model (1) using the quarterly U.S. sample of listed
banks and the asset and liability-side components of the Berger and Bowman (2009) liquidity creation (LC) measure
(both divided by total assets) as the dependent variables. The summary statistics are presented in Table OA4 in the
Online Appendix. The instrument is the Leary and Roberts (2014) lagged peer bank average equity return shock.
All coefficients are scaled by the corresponding variable’s standard deviation and t-statistics (in parentheses) are
robust to heteroscedasticity and within bank dependence. Peer groups are defined as commercial banks operating
in the United States in the same quarter grouped into a maximum of 10, 20, or 30 banks according to their size.
Bank-specific characteristics include size, capital ratio, ROA, deposit share, and NPL provisions. Peer banks’
average characteristics comprise the same set of bank-specific controls but are computed as the average across all
banks within a certain peer group, excluding bank i’s observation. All control variables are lagged by one quarter.
First-stage KP F-stat is the cluster-robust Kleibergen and Paap (2006) F-statistic testing for weak instruments.
Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table OA11: Peer effects in off–B/S liquidity creation decisions – U.S. sample

Off–balance sheet LC (1) (2) (3)

Peers’ off–balance sheet LC -0.042 0.007 0.033
(-0.772) (0.086) (0.770)

Peer group size 10 20 30
No. observations 14,407 14,407 14,407
No. banks 472 472 472
Bank and peer controls Y Y Y
Quarter and bank FE Y Y Y
First-stage KP F-stat 1.615 0.535 2.732*
First-stage instrument 0.000 0.000 -0.000*

(1.271) (0.732) (-1.653)
Mean of dependent variable 0.105 0.105 0.105

The table reports two-stage least squares (2SLS) estimates of Model (1) using the quarterly U.S. sample of listed
banks and the off–balance sheet component of the Berger and Bowman (2009) liquidity creation (LC) measure
divided by total assets as the dependent variable. The summary statistics are presented in Table OA4 in the
Online Appendix. The instrument is the Leary and Roberts (2014) lagged peer bank average equity return shock.
All coefficients are scaled by the corresponding variable’s standard deviation and t-statistics (in parentheses) are
robust to heteroscedasticity and within bank dependence. Peer groups are defined as commercial banks operating
in the United States in the same quarter grouped into a maximum of 10, 20, or 30 banks according to their size.
Bank-specific characteristics include size, capital ratio, ROA, deposit share, and NPL provisions. Peer banks’
average characteristics comprise the same set of bank-specific controls but are computed as the average across all
banks within a certain peer group, excluding bank i’s observation. All control variables are lagged by one quarter.
First-stage KP F-stat is the cluster-robust Kleibergen and Paap (2006) F-statistic testing for weak instruments.
Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table OA12: Earning asset versus non-earning asset components of liquidity
creation

Earning asset LC Non-earning asset LC
(1) (2) (3) (4) (5) (6)

Peers’ earning asset LC 0.027** 0.066*** 0.067*
(2.014) (3.082) (1.920)

Peers’ non-earning asset LC 0.008 0.001 0.004
(1.445) (0.049) (0.225)

Peer group size 10 20 30 10 20 30
No. observations 10,575 13,023 13,954 10,575 13,023 13,954
No. banks 1,407 1,528 1,584 1,407 1,528 1,584
No. peer groups 141 80 59 141 80 59
Bank, peer, and country controls Y Y Y Y Y Y
Year and bank FE Y Y Y Y Y Y
First-stage KP F-stat 38.49*** 17.18*** 7.607*** 7.239*** 0.381 0.249
First-stage instrument 0.016*** 0.013*** 0.009*** 0.001*** 0.000 0.000

(6.204) (4.145) (2.758) (2.691) (0.617) (0.499)
Mean of dependent variable 0.149 0.160 0.164 0.005 0.005 0.006
This table reports two-stage least squares (2SLS) estimates of Model (1) using the cross-country OECD sample
and the earning asset and non-earning asset components of the Berger and Bowman (2009) liquidity creation (LC)
measure (both divided by total assets) as the dependent variables. All coefficients are scaled by the corresponding
variable’s standard deviation. t-statistics (in parentheses) are robust to heteroscedasticity and within-peer-group
dependence. Peer groups are defined as commercial banks operating in the same country in the same year grouped
into a maximum of 10, 20, or 30 banks according to their size (total assets). The bank-specific (size, capital ratio,
ROA, deposit share, and NPL provisions) and country-level controls (GDP per capita, GDP growth volatility,
concentration, and prudential regulation intensity) are all defined in Table 1. Peer banks’ average characteristics
comprise the same set of bank-specific controls but are computed as the average across all banks within a certain
peer group, excluding bank i’s observation. All control variables are lagged by one period. First-stage KP F-stat
is the cluster-robust Kleibergen and Paap (2006) F-statistic testing for weak instruments. Statistical significance
at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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Table OA13: Peer effects in banks’ liquidity mismatch decisions and default risk

lnZscore3y lnZscore5y

(1) (2) (3) (4) (5) (6)

Peer effect: -0.793*** -0.675*** -0.635*** -0.451*** -0.487*** -0.526***
Liq. creation – β̂LC

j,t (-7.746) (-5.257) (-5.087) (-5.520) (-4.351) (-4.386)

Peer group size 10 20 30 10 20 30
No. observations 8,192 10,352 11,139 6,366 7,892 8,592
No. banks 1,240 1,378 1,426 1,037 1,154 1,203
Adj. R-squared 0.470 0.473 0.469 0.610 0.618 0.610
Bank characteristics Y Y Y Y Y Y
Country controls Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
Mean of dependent variable 3.672 3.684 3.673 3.317 3.325 3.313

This table reports coefficient estimates of Model (5) using the cross-country OECD sample and ln(Z-Score) as
the dependent variable. The Z-score of bank i at time t is defined as the sum of return-on-assets (ROA) and the
equity to assets ratio, all divided by the standard deviation of the ROA using a three or five-year rolling window.
This approach avoids the variation in Z-scores within banks over time to be exclusively driven by variation in
levels of profitability and capital. In addition, by not relying on the full sample period, the denominator is
no longer computed over different window lengths for different banks. The peer effects in liquidity mismatch
decisions are estimated with Model (4) (β̂LC

j,t ), where the relationship between the liquidity of bank i and the
liquidity of its peers is allowed to vary across countries and over time. I use the estimated coefficient on the
peer effect for a given country-year pair as regressor to explain bank risk if and only if the Sanderson and
Windmeijer (2016) conditional first-stage F-statistics are above the weak instrument critical values proposed by
Stock and Yogo (2005) based on size distortions of the associated Wald statistic considering a 25% maximal IV
size. Liquidity creation is the Berger and Bowman (2009) on–balance sheet liquidity creation measure divided
by total assets. Table OA2 presents the weights given to the different balance sheet items when computing this
measure. t-statistics (in parentheses) are robust to heteroscedasticity and within bank dependence. Peer groups
are defined as commercial banks operating in the same country in the same year grouped into a maximum of
10, 20, or 30 banks according to their size (total assets). The bank-specific (size, deposit share, NPL provisions,
liquidity ratio, cost-to-income ratio, and non-interest revenue share) and country-level controls (GDP per capita,
GDP growth volatility, concentration, and prudential regulation intensity) are all defined in Table 1. All control
variables are lagged by one period. *, **, and *** designate that the test statistic is significant at the 10%, 5%,
and 1% levels.
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Table OA14: Peer effects in banks’ liquidity mismatch decisions and systemic risk

MES SRISK
(1) (2) (3) (4) (5) (6)

Peer effect: 0.785* 1.283*** 0.944*** 2.479** 2.781** 2.236**
Liq. creation – β̂LC

j,t (1.786) (3.193) (2.596) (2.270) (2.588) (2.159)

Peer group size 10 20 30 10 20 30
No. observations 1,515 1,993 2,224 1,515 1,993 2,224
No. banks 224 269 282 224 269 282
Adj. R-squared 0.706 0.684 0.688 0.805 0.801 0.804
Bank characteristics Y Y Y Y Y Y
Country controls Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Bank FE Y Y Y Y Y Y
Mean of dependent variable 2.652 2.548 2.455 3.985 3.309 3.151

This table reports coefficient estimates of Model (5) using the cross-country OECD sample and the marginal
expected shortfall (MES) or the systemic capital shortfall (SRISK) as the dependent variables. MES is defined
as bank i’s expected equity loss (in %) in year t conditional on the market experiencing one of its 5% lowest
returns in that given year. It is computed using the opposite of returns such that the higher a bank’s MES is, the
higher its systemic risk contribution. The market is defined as the country-specific banking sector equity market.
SRISK corresponds to the expected bank i’s capital shortage (in billion USD) during a period of system distress
and severe market decline. Following Acharya, Engle, and Richardson (2012), the long-run MES is approximated
as 1-exp(-18*MES) where MES is the one day loss expected if market returns are less than -2%. Unlike MES,
SRISK is a also function of the bank’s book value of debt, its market value of equity and a minimum capital
ratio that bank firm needs to hold. The peer effects in liquidity mismatch decisions are estimated with Model
(4) (β̂LC

j,t ), where the relationship between the liquidity of bank i and the liquidity of its peers is allowed to
vary across countries and over time. I use the estimated coefficient on the peer effect for a given country-year
pair as regressor to explain bank risk if and only if the Sanderson and Windmeijer (2016) conditional first-stage
F-statistics are above the weak instrument critical values proposed by Stock and Yogo (2005) based on size
distortions of the associated Wald statistic considering a 25% maximal IV size. Liquidity creation is the Berger
and Bowman (2009) on–balance sheet liquidity creation measure divided by total assets. Table OA2 presents
the weights given to the different balance sheet items when computing this measure. t-statistics (in parentheses)
are robust to heteroscedasticity and within bank dependence. Peer groups are defined as commercial banks
operating in the same country in the same year grouped into a maximum of 10, 20, or 30 banks according to
their size (total assets). The bank-specific (size, capital ratio, ROA, deposit share, NPL provisions, liquidity ratio,
cost-to-income ratio, and non-interest revenue share) and country-level controls (GDP per capita, GDP growth
volatility, concentration, and prudential regulation intensity) are all defined in Table 1. All control variables are
lagged by one period. *, **, and *** designate that the test statistic is significant at the 10%, 5%, and 1% levels.
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