

Risk endogeneity at the lender/investor-of-last-resort

Diego Caballero, André Lucas, Bernd Schwaab and Xin Zhang

October 2019

WORKING PAPERS ARE OBTAINABLE FROM

www.riksbank.se/en/research

Sveriges Riksbank • SE-103 37 Stockholm Fax international: +46 8 21 05 31 Telephone international: +46 8 787 00 00

The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The opinions expressed in this article are the sole responsibility of the author(s) and should not be interpreted as reflecting the views of Sveriges Riksbank.

Risk endogeneity at the lender/investor-of-last-resort*

Diego Caballero,^(a) André Lucas,^(b) Bernd Schwaab,^(a) Xin Zhang,^(c)

(a) European Central Bank ^(b) Vrije Universiteit Amsterdam and Tinbergen Institute

(c) Sveriges Riksbank, Research Division

Sveriges Riksbank Working Paper Series

No. 382

Abstract

To what extent can a central bank influence its own balance sheet credit risks during a financial crisis through unconventional monetary policy operations? To study this question we develop a risk measurement framework to infer the time-variation in portfolio credit risks at a high (weekly) frequency. Focusing on the Eurosystem's experience during the euro area sovereign debt crisis between 2010 and 2012, we find that the announcement and implementation of unconventional monetary policy operations generated beneficial risk spill-overs across policy portfolios. This caused overall risk to be nonlinear in exposures. In some instances the Eurosystem reduced its overall balance sheet credit risk by doing *more*, in line with Bagehot's well-known assertion that occasionally "only the brave plan is the safe plan."

Keywords: lender-of-last-resort; unconventional monetary policy; portfolio credit risk; longer-term operational framework; central bank communication.

JEL classification: G21, C33.

^{*}Author information: Diego Caballero, European Central Bank, Sonnemannstrasse 22, 60314 Frankfurt, Germany, Email: diego.caballero@ecb.europa.eu. André Lucas, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands, Email: a.lucas@vu.nl. Bernd Schwaab, European Central Bank, Sonnemannstrasse 22, 60314 Frankfurt, Germany, Email: bernd.schwaab@ecb.europa.eu. Xin Zhang, Sveriges Riksbank, Brunkebergstorg 11, 103 37 Stockholm, Sweden, Email: xin.zhang@riksbank.se. Parts of the paper were written when Schwaab was seconded to the ECB's Risk Management directorate, and when Schwaab and Zhang were Central Bank Research Fellows at the Bank for International Settlements. The views expressed in this paper are those of the authors and they do not necessarily reflect the views or policies of the European Central Bank or Sveriges Riksbank.

1 Introduction

For at least 150 years, going back to Thornton (1802) and Bagehot (1873), central bankers have wondered to what extent they can actively influence rather than only passively accept their own balance sheet risks during a financial crisis. Theoretically, the possibility of the central bank influencing its own risk is uncontroversial. In the context of a pure illiquidity crisis without solvency concerns, for example, the simple announcement by a central bank to act as a generalized lender-of-last-resort (LOLR) to the entire financial system in line with Bagehotinspired principles¹ could shift the economy from a 'bad' to a 'good' equilibrium, causing all illiquidity-related credit risks to quickly disappear at virtually no cost or additional central bank balance sheet risk; see e.g. Diamond and Dybvig (1983), Rochet and Vives (2004), Reis (2013), and Bindseil (2014). Additionally, the central bank's announcement to act as an investor-of-last-resort (IOLR) by purchasing stressed assets in malfunctioning markets could similarly shift expectations, possibly leaving the central bank's credit risk unaffected; see Calvo (1988), ECB (2014), Corsetti and Dedola (2016), and Acharya et al. (2018). Whether such possibilities are based on wishful "Münchhausen thinking,"² or are instead empirically relevant, is currently unclear. Empirical studies of central banks' financial risks are rare, primarily because the required data are almost always confidential. As a result, to our knowledge, the response of central bank credit risks to large-scale unconventional monetary policies has remained unexplored.

It is uncontroversial that lending freely in line with Bagehot (1873)-inspired principles as well as purchasing assets on stressed markets during a financial crisis can increase the overall credit risk of a central bank's balance sheet. How different LOLR and IOLR policies interact from a risk perspective, however, is currently unclear. Specifically, we ask: Can *increased* central bank liquidity provision or asset purchases during a financial crisis *reduce* bottom line central bank risks? This could happen if risk-taking in one part of the balance sheet

¹Bagehot (1873) famously argued that the lender-of-last-resort should lend freely to solvent banks, against good collateral valued at pre-crisis levels, and at a penalty rate; see also Rochet and Vives (2004) and Freixas et al. (2004).

 $^{^2{\}rm This}$ fictional German noblem an remarkably pulled himself, along with his horse, out of a morass by his own hair.

(e.g., more asset purchases) de-risks other balance sheet positions (e.g., the collateralized lending portfolio) by a commensurate or even larger amount. Focusing on the euro area during the sovereign debt crisis between 2010 and 2012, how economically important were such risk spillovers across monetary policy operations? Were the relevant financial buffers at all times sufficiently high? Finally, did unconventional operations differ in terms of beneficial economic impact per additional unit of risk?

We argue that the Eurosystem's experience during the euro area sovereign debt crisis is an ideal laboratory to study the impact of a central bank's LOLR and IOLR policies on the credit risk it assumes. Between 2010 and 2012, severe liquidity squeezes and market malfunctions forced the Eurosystem – the European Central Bank (ECB) and its then 17 national central banks (NCBs) – to act as a LOLR to the entire financial system; see e.g. ECB (2014), Drechsler et al. (2016), and de Andoain et al. (2016). Large-scale central bank lending to all banks helped avert a collapse of vital parts of the financial system and, with it, supported the transmission of monetary policy. Large-scale liquidity provision occurred via main refinancing operations (MROs), multiple long-term refinancing operations (LTROs), as well as two very-long-term refinancing operations (VLTROs), all backed by repeated expansions of the set of eligible collateral. In addition, the Eurosystem acted as an IOLR in stressed markets. For example, it purchased government bonds in malfunctioning secondary markets within its Securities Markets Programme (SMP) between 2010 and 2012, and committed to doing so again under certain circumstances within its Outright Monetary Transactions (OMT) program as announced in August 2012.

The Eurosystem's actions as a large-scale LOLR and IOLR to support stressed banks and sovereigns had a first-order impact on the size, composition, and, ultimately, the credit risk of its balance sheet. At the time, its policies raised substantial concerns about the central bank taking excessive risks (and supporting moral hazard) by helping troubled counterparties. Particular concerns related to the potential effect of a materialization of credit risk on the ECB's reputation, independence, and ultimately its ability to steer inflation towards its target of close to but below 2% over the medium term. The credit risk concerns were so pronounced at the time that some media outlets started referring to the ECB as the ECBB: Europe's Central Bad Bank; see e.g. Brendel and Pauly (2011) and Böhme (2014).

By focusing on credit risk we do not intend to imply that other risk components interest rate risk, exchange rate risk, liquidity risk, political risk, redenomination risk, and various other market risks — are not important. The credit risk component of central banks' balance sheets, however, has received particular and increasing attention from the public and the financial press since the global financial crisis; see e.g. Buiter and Rahbari (2012), Böhme (2014), and Bindseil and Laeven (2017). This attention has not waned given the complex and large balance sheets of currently all major central banks; see e.g. Greenlaw et al. (2013) and Reis (2018). Even in normal times, few central banks globally can afford to implement monetary policy simply by buying or selling (or lending against) entirely credit-risk-free financial assets.³

The methodological part of this paper introduces a reduced-form credit risk measurement framework that allows us to study the above questions. The framework is based on a tractable model for dependent defaults that can accommodate a large number of bank and sovereign counterparties simultaneously. The model allows us to capture extreme joint tail dependence, time-varying volatility and correlation parameters, as well as a potential asymmetry in the correlation dynamics. These empirical features are not unique to central bank portfolios but instead can apply to any large diversified asset or collateralized lending portfolio. We thus expect our risk framework to be of interest also for non-central-bank financial institutions that seek to repeatedly infer their portfolio credit risks at a high (weekly) frequency.

We stress that a central bank's risk management function is different from that of a commercial bank in at least three ways. First, risk and profitability are not first-order measures of success for a central bank. When taking monetary policy decisions the financial consequences for the central bank's bottom line are usually not a primary concern. If a central bank endures sustained losses, however, its independence may be, or perceived to be, impinged, which in turn may have adverse consequences for its ability to achieve its goals

 $^{^{3}}$ Risk concerns have remained a constant thorn in the side of monetary policy implementation. Historically, central banks have aimed to protect their balance sheets from unnecessary financial risks and avoid undue market non-neutrality through carefully designed collateral frameworks; see e.g. Cheun et al. (2009) for a survey.

and economic welfare.

Second, commercial banks, by engaging in maturity transformation, are by their very nature exposed to liquidity shocks. By contrast, central banks are uniquely able to provide liquidity-support in a financial crisis owing to the fact that they are never liquidity-constrained in the currency they issue; see e.g. Bindseil (2014) and Reis (2015). Consequently, the default risk of the central bank itself on its domestic currency liabilities is negligible even during an existential financial crisis.

Finally, a small or medium-sized commercial bank is unlikely to be able to materially influence financial risks and risk correlations. Commercial banks are 'risk takers' in more than one sense — risk management is primarily about choosing exposures at *given* risks. This is inherently less true for central banks, as we show. Instead, point-in-time risk measures and risk correlations respond to a central bank's communication and large-scale actions, and are *endogenous* in this sense, particularly during a financial crisis. Philosophically, this requires a particular mindset of a central bank's risk management function, thinking as economists at least as much as as quants.

The empirical part of this paper applies our credit risk framework to the Eurosystem's consolidated conventional and unconventional monetary policy portfolios. We thus contribute to a growing literature that applies stress-testing methods to central banks' assets and income.⁴ Exposures are taken from the Eurosystem's balance sheet and measured at a weekly frequency between 2009 and 2015. Standard point-in-time risk measures are obtained from Moody's Analytics (for banks) or are calculated from CDS spreads (for sovereigns), also at a weekly frequency. All risk model parameters are estimated by the method of maximum likelihood. Common portfolio risk measures, such as the expected loss and expected short-fall, are obtained through Monte Carlo simulation. We compare model-implied portfolio credit risks shortly before and after key policy dates. This 'high-frequency' weekly assess-

⁴For example, Carpenter et al. (2013) and Greenlaw et al. (2013) stress-test the Federal Reserve's ability to send positive remittances to the U.S. Treasury given that a large-scale government bond portfolio exposes the Fed (and thus indirectly the Treasury) to interest rate risk. Christensen et al. (2015) advocate the use of probability-based stress tests, and find that the risk of temporarily suspended Fed remittances to the Treasury is small but non-negligible (at approximately 10%). Finally, Del Negro and Sims (2015) consider conditions under which a central bank might need to withhold seigniorage, or request recapitalization from the treasury, in order to maintain its monetary policy commitments.

ment identifies the effect of each policy on its own and other portfolio credit risks; see e.g. Rogers et al. (2014) and Fratzscher and Rieth (2018) for similar event-study approaches.

We focus on three empirical findings. First, we find that LOLR- and IOLR-implied credit risks tend to be negatively related in our sample. Taking additional risk in one part of the central bank's balance sheet (e.g., the announcement and implementation of SMP asset purchases) tended to de-risk other positions (e.g., the collateralized lending exposures from previous LTROs). Vice versa, the allotment of two large-scale VLTRO credit operations each decreased the expected shortfall of the SMP asset portfolio. As a result of these risk spillovers, central banks' overall risks can be nonlinear in exposures. In bad times, additional lending or asset exposures can increase overall risk less than proportionally. Conversely, reducing balance sheet size after the crisis may not reduce total risk by as much as one would expect by linear scaling.

Second, some unconventional policy operations reduced rather than added risk to the Eurosystem's balance sheet in bottom line terms. For example, we find that the initial OMT announcement de-risked the Eurosystem's balance sheet by \in 41.4 bn in 99% expected shortfall (ES). The announcement of OMT technical details in September 2012 was associated with a further reduction in 99% ES of \in 18.1 bn. As another example, the allotment of the first VLTRO in late 2011 raised the 99% ES associated with VLTRO lending from zero to approximately \in 27.6 bn. However, the allotment also sharply reduced the need for shorter-term central bank funding, and in addition de-risked the SMP asset portfolio as banks funneled some of the additional central bank liquidity into government bonds, mitigating sovereigns' funding stress; see e.g. Drechsler et al. (2016). The overall 99% ES increased, but only marginally so, by \in 0.8 bn. The total expected loss decreased, by \in 1.4 bn. We conclude that, in exceptional circumstances, a central bank can remove excess risk from its balance sheet by doing *more*, in line with Bagehot (1873)'s well-known assertion that occasionally "only the brave plan is the safe plan."

A reduction in net risk is by no means guaranteed, however. A central bank's risk response can go either way. Which way it goes likely depends on market perceptions about the sustainability of and the central bank's commitment to its unconventional policies, and therefore its communication with the public. For example, the asset purchases that were implemented in the week following the SMP's initial announcement in May 2010 raised the 99% ES of the SMP portfolio from zero to approximately \in 7.3 bn. The policy announcement and the initial purchases spilled over and helped de-risk the collateralized lending book to some extent. The total 99% ES, however, still increased, by \in 5.1 bn. As a second example, the extension of the SMP to include Spain and Italy in August 2011 did not reduce total balance sheet risk. This time the effect did not even spill over to reduce the risks of the other monetary policy portfolios. This exception is likely related to the pronounced controversy regarding the extension of the SMP at that time. The full extent of the controversy became evident with the resignation of the Bundesbank President in February 2011 and an ECB Executive Board member in September 2011. The divided decision, as well as communication challenges associated with the unprecedented policy, may have caused market participants to doubt that the SMP would be active for long and substantial in size, lessening its economic and risk impact.

Third, our risk estimates allow us to study past unconventional monetary policies in terms of their ex-post 'risk efficiency.' Risk efficiency is the notion that policy impact should be maximal given a certain increase in balance sheet risk. Given an estimate of policy impact (e.g., a change in long-term inflation swap rates around the time of a policy announcement) and an appropriate estimate of risk (e.g., the change in 99% ES), it is possible to evaluate different policies ex-post by scaling the former by the latter. Doing so, we find that the ECB's OMT program was particularly ex-post risk efficient. Its announcement *increased* long-term inflation expectations away from deflationary tendencies towards the ECB's target of close to but below two percent, *decreased* sovereign benchmark bond yields of stressed euro area countries, while *removing* risk from the central bank's balance sheet (a win-win-win). Further, we find that the first allotment of VLTRO funds was more risk-efficient than its second installment. The SMP, despite its benefits documented elsewhere (e.g. Eser and Schwaab (2016), Ghysels et al. (2017)), does not appear to have been a particularly risk-efficient policy measure as defined above.

Our findings can have important implications for the design of central banks' post-crisis

operational frameworks; see e.g. Reis (2018, 2019). As a first key takeaway, a certain amount of excess central bank liquidity for monetary policy purposes can be provided via both credit operations and asset purchases. We find that collateralized credit operations imply substantially less credit risks (by at least one order of magnitude in our sample) than outright government bond holdings per $\in 1$ of liquidity owing to the double recourse built into collateralized lending as well as the diversification over a much larger set of counterparties. Such pronounced differences in portfolio risk may be relevant for the decision whether to provide additional central bank liquidity via collateralized lending operations or via outright asset purchases. Second, expanding the set of eligible assets during a liquidity crisis could help mitigate the procyclicality inherent in some central bank's risk protection frameworks. Our results suggest that doing so does not necessarily increase a central bank's overall level of credit risk. Third, central bank communication on unprecedented monetary policy measures should, ideally, be unanimous and detailed to be effective and risk-efficient (see SMP versus OMT). Finally, risk spillovers across monetary policy portfolios may call for gradualism in reducing balance sheet size after a financial crisis.

The remainder of the paper is set up as follows. Section 2 presents our exposure data. Section 3 introduces our high-dimensional credit risk measurement framework. Section 4 applies the framework to a subset of the Eurosystem's balance sheet. Section 5 concludes. A Web Appendix presents additional results and technical details.

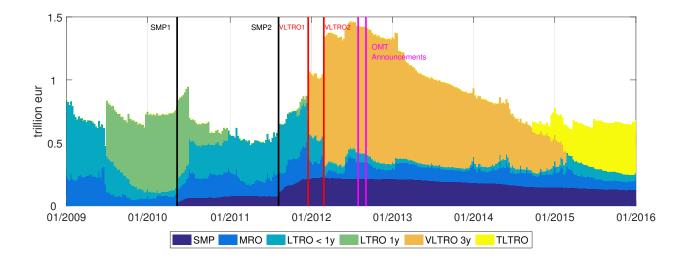
2 Eurosystem operations

We study the time variation in Eurosystem portfolio credit risks, with a particular focus on such risks just before and after key monetary policy announcements during the euro area sovereign debt crisis. We focus on six announcements that are related to three unconventional monetary policy operations: the SMP, the VLTROs, and the OMT. This section first discusses these operations, and then presents the relevant point-in-time exposure data.

The Eurosystem adjusts the money supply in the euro area mainly via so-called refinancing operations that usually take the form of repos. Eurosystem refinancing operations between 2009 and 2015 included main refinancing operations (MROs), various long-term refinancing operations (LTRO<1y, LTRO-1y), very-long-term refinancing operations (VL-TROs), and targeted long-term refinancing operations (TLTROs). Between 2010 and 2012 the Eurosystem also conducted asset purchases within its SMP program. We collectively refer to the LTRO-1y, VLTROs, TLTROs, SMP, and OMT as unconventional monetary policy operations. The financial risks and profits associated with these policy portfolios have been shared across the Eurosystem since their inception. We refer to Web Appendix A for details on the SMP, the VLTROs, and the OMT.

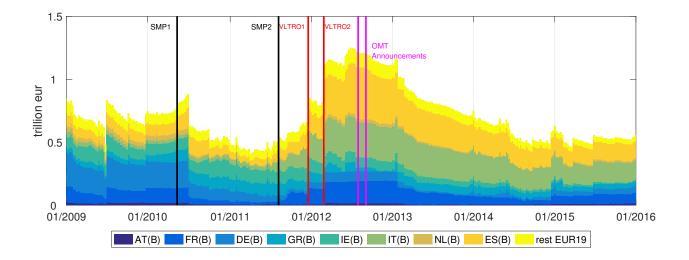
Our study includes all exposures from refinancing operations and almost all asset portfolios held outright for monetary policy purposes within our sample. We exclude assets purchased within the Expanded Asset Purchase Programme (APP) commencing in March 2015 since the APP was unrelated to generalized lender-/investor-of-last-resort motivations. In addition, the risks and profits associated with the APP are subject to different risk sharing arrangements across the constituent Eurosystem national central banks.⁵ We further exclude the first two covered bond purchase programmes (CBPP1 and CBPP2) because of their small sizes (≤ 60 bn and ≤ 16.4 bn at their respective peaks) and low default rates. Finally, we exclude non-monetary policy related portfolios such as the ECB's Own Funds Portfolio.

Figure 1 plots selected items of the Eurosystem's weekly balance sheet between 2009 and 2015.⁶ We distinguish five different liquidity operations: MRO, LTRO<1y, LTRO1y, VLTRO3y, and TLTRO. The figure also plots the par value of assets held in the SMP portfolio. Clearly, the Eurosystem's balance sheet varied in size, composition, and thus credit risk during the course of the global financial crisis and euro area sovereign debt crisis. A peak in total assets was reached in mid-2012, at approximately ≤ 1.5 trn, following two VLTROs and SMP asset purchases.


Figure 2 plots the Eurosystem's country-level collateralized lending exposures, aggregated over the five liquidity-providing operations of Figure 1. The largest share of collateralized

⁵We refer to ECB (2014, 2015). A discussion of the European institutional framework and euro area risk sharing arrangements across NCBs is beyond the scope of this paper.

⁶The Eurosystem's balance sheet is public; see http://sdw.ecb.europa.eu/browse.do?node=9691110.


Figure 1: Eurosystem collateralized lending and SMP exposures

Total collateralized lending exposures associated with different liquidity operations (MRO, LTRO<1y, LTRO1y, VLTRO3y, TLTRO), as well as government bond holdings from purchases within the Securities Markets Programme (SMP). Vertical axis is in trillion euro. Data is weekly between 2009 and 2015. Two black vertical lines refer to the initial announcement of the SMP on 10 May 2010 (SMP1) and the cross-sectional extension of the program to include Italy and Spain on 08 August 2011 (SMP2). Two red vertical lines mark the allotment of the first and second three-year VLTRO on 20 December 2011 and 28 February 2012, respectively. Two purple vertical lines mark the initial announcement of the oMT on 02 August 2012 (OMT1) and the announcement of its technical details on 06 September 2012 (OMT2).

Figure 2: Eurosystem collateralized lending across countries

Exposures across different euro area countries from five liquidity-providing operations; see Figure 1. The vertical axis is in trillion euro. Vertical black, red, and purple lines indicate six monetary policy announcements as described in Figure 1. Data is weekly between 2009 and 2015.

lending was tapped by banks in Italy and Spain, and also Greece, Ireland, and Portugal. These sovereigns (and their banks) were perceived by markets to be particularly affected by the euro area sovereign debt crisis; see Section 3.2 below. Banks from non-stressed countries such as Germany and France were less liquidity-constrained and therefore relied less heavily on Eurosystem funding during the crisis.

3 Risk measurement framework

3.1 Portfolio risk measures

Credit losses at time t = 1, ..., T over a one-year-ahead horizon are only known with certainty after the year has passed, and are uncertain (random) at time t. The probability distribution of ex-ante credit losses is therefore a key concern for risk measurement. We model total credit losses $\ell_t(k)$ associated with potentially many counterparties $i = 1, ..., N_t(k)$ as

$$\ell_t(k) = \sum_{i=1}^{N_t(k)} \ell_{it}(k) = \sum_{i=1}^{N_t(k)} 1(\text{default}_{i,t+1:t+52}) \cdot \text{LGD}_{i,t+1:t+52} \cdot \text{EAD}_{i,t+1:t+52}(k), \quad (1)$$

where $k = 1, \ldots, 6$ denotes monetary policy operations (e.g., LTRO lending or SMP asset holdings), $N_t(k)$ is the total number of both bank and sovereign counterparties that are relevant for operation k, $\ell_{it}(k)$ is the counterparty-specific one-year-ahead loss between week t + 1 and t + 52, 1(default_{i,t+1:t+52}) is an indicator function that takes the value of one if and only if counterparty i defaults between t + 1 and t + 52, LGD_{i,t+1:t+52} \in [0, 1] is the loss-given-default as a fraction of EAD_{i,t+1:t+52}(k), and EAD_{i,t+1:t+52}(k) is the exposure-atdefault associated with counterparty i and policy operation k. A default happens when the log-asset value of counterparty i falls below its counterparty-specific default threshold; see e.g. Merton (1974) and CreditMetrics (2007). The loss $\ell_{it}(k)$ is random because it is a function of three random terms: the default indicator, LGD, and EAD. Total losses from monetary policy operations are given by $\ell_t = \sum_{k=1}^{K} \ell_t(k)$. We focus on a one-year-ahead risk horizon to align our estimates with the common annual reporting frequency.

We adopt a static balance sheet assumption in our empirical study. This implies that risk

parameters at time t are held constant between t + 1 and t + 52. In addition, exposures with maturities below the risk horizon are reinvested (for assets) or appropriately rolled over (for loans); see Section 3.4. As a result, the maturity structures of the policy portfolios are less relevant, and using a one-year risk horizon is without loss of much generality. Risk measures for different year-ahead horizons, when available, tend to be highly correlated.

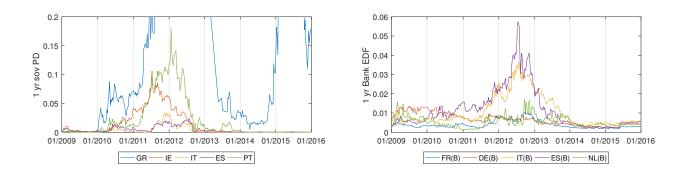
Portfolio risk measures are typically based on moments of the ex-ante loss distribution. We focus on standard risk measures such as the expected loss and expected shortfall at a confidence level γ ,

$$\begin{aligned} \mathrm{EL}(k)_t &= \mathbb{E}_t \left[\ell_t(k) \right], \\ \mathrm{ES}(k)_t^{\gamma} &= \mathbb{E}_t \left[\ell_t(k) \mid \ell_t(k) \ge \mathrm{VaR}^{\gamma}(\ell_t(k)) \right] \end{aligned}$$

where $\Pr[\ell_t(k) \ge \operatorname{VaR}^{\gamma}(\ell_t(k))] \equiv 1 - \gamma$ implicitly defines the value-at-risk at confidence level γ , and $\mathbb{E}_t[\cdot]$ is the conditional time t expectation over all sources of randomness in (1). Moments of the loss density can easily be obtained by simulation; see Section 4.2. The expected shortfall $\operatorname{ES}(k)_t^{\gamma}$ is often interpreted as the "average VaR in the tail," and is typically more sensitive to the shape of the tail of the loss distribution.

The remainder of this section reviews the modeling of the ingredients of (1) from left to right: marginal default probabilities and dependence, LGD, and EAD.

3.2 Bank and sovereign EDFs


We rely on expected default frequency (EDF) data from Moody's Analytics, formerly Moody's KMV, when assigning point-in-time probabilities of default, p_{it} , to Eurosystem bank counterparties. One-year ahead EDFs are connected to (1) as

$$\mathbf{E}_t[1(\operatorname{default}_{i,t+1:t+52})] = \operatorname{EDF}_{it} = p_{it},\tag{2}$$

where $E_t[\cdot]$ denotes the expectations operator conditional on all information available at time t. EDFs are point-in-time forecasts of physical default hazard rates, and are based on

Figure 3: Sovereign and banking sector EDFs

Left panel: One-year-ahead CDS-implied-EDFs for five SMP sovereigns. Right panel: One-year-ahead banking sector EDF indices at the country level for the five largest euro area countries: Germany, France, Italy, Spain, and the Netherlands. Data is weekly between 2009 and 2015.

a proprietary firm value model that takes firm equity values and balance sheet information as inputs; see Crosbie and Bohn (2003). EDFs are standard credit risk measurements and are routinely used in the financial industry and credit risk literature; see for example Lando (2003) and Duffie et al. (2009).

EDF measures are available for listed banks only. Many Eurosystem bank counterparties, however, are not listed. At the same time, some parsimony is required when considering many bank counterparties. We address both issues by using one-year-ahead median EDFs at the country-level to measure point-in-time banking sector risk.⁷ The right panel of Figure 3 plots our one-year ahead EDF indices for the 'big-5' euro area countries: Germany, France, Italy, Spain, and the Netherlands. During the crisis, most Eurosystem liquidity was taken up by banks located in these countries; see Figure 2. Banking sector EDF measures differ widely across countries, and peak around mid-2012. Our empirical setup uses nine banking sector EDFs that correspond to the countries shown in Figure 2.

Unfortunately, firm-value based EDF measures are unavailable for sovereign counterparties. We therefore need to infer physical PDs from observed sovereign CDS spreads. Web Appendix B provides the details of our approach. The left panel of Figure 3 presents one-year ahead sovereign risk measures for the five SMP countries. Most sovereign CDS-implied-EDFs

⁷ EDF indices based on averages weighted by total bank assets are also available. These look similar but overall appear less reliable, and are not used for this reason.

are visibly correlated with their corresponding banking sector's EDF, and similarly tend to peak around mid-2012.

3.3 Multivariate model for dependent defaults

During and after the Great Financial Crisis the Gaussian dependence model (copula) was occasionally referred to as "the formula that killed Wall Street;" see e.g. Salmon (2009). Since then a consensus emerged that key features of appropriate risk models should include joint fat tails of individual risks, non-Gaussian dependence (to account for dependence in tail areas), instability or time variation in parameters, and potential asymmetries in dependence; see e.g. McNeil et al. (2015, Ch. 7). These concerns are not unique to central bank portfolios but instead apply to any large diversified asset or collateralized lending portfolio. Our model for dependent defaults presented in this section incorporates the above consensus.

Our risk model adopts the modeling framework developed previously in Creal et al. (2011) and Lucas et al. (2014, 2017). To tailor the model to the problem at hand, however, we modify it slightly to accommodate a large number of heterogeneous bank and sovereign counterparties. In addition, owing to high dimensions, we seek to capture joint tail dependence and a potential asymmetry in the copula in a computationally more straightforward way. Taken together, this yields a modeling framework that can be of use also to non-central-bank financial institutions.⁸

Following the seminal framework of Merton (1974) and CreditMetrics (2007), we assume that a counterparty *i* defaults if and only if its log asset value falls short of a certain default threshold. We assume that this happens when *changes* from current log asset values to future ones are sufficiently negative. Specifically, we assume that a default occurs with a time-varying default probability p_{it} , where

$$p_{it} = \Pr[\tilde{y}_{it} < \tau_{it}] = F(\tau_{it}) \Leftrightarrow \tau_{it} = F^{-1}(p_{it}), \tag{3}$$

⁸Other models to quantify a central bank's portfolio credit risks exist. For central-bank-specific throughthe-cycle models of portfolio credit risk see e.g. ECB (2007, 2015). Our model measures credit risk at an uncommonly high frequency based on point-in-time risk measures. This is necessary given the questions at hand; see Section 4. For a discussion of model selection see Section 4.1.

where \tilde{y}_{it} is a one-year-ahead change in log asset value, τ_{it} is a default threshold expressed as a log return, F is the CDF of \tilde{y}_{it} , and p_{it} is defined in (2). We stress that (3) is essentially a Merton (1974) model turned on its head in two ways. First, unlike Merton (1974), p_{it} is treated as an observed *input* in our model. In this way, point-in-time p_{it} and risk correlations can (and do) respond to market participant's expectations of future central bank actions. Second, τ_{it} does not have an economic interpretation in terms of debt levels of the firm. Rather, τ_{it} is chosen at each point in time and for each counterparty as the p_{it} -quantile of F such that the marginal default probability implied by the multivariate (copula) model coincides with the observed market-implied default probability for that counterparty at that time; see the last equality in (3).⁹ The reduced form character of (3) ensures that the model can be used for sovereigns as well, for which asset values are a less intuitive notion.

When modeling dependent defaults, we link default indicators using a Student's t copula function. In particular, we assume that one-year-ahead changes in log-asset values \tilde{y}_{it} are generated by a high-dimensional multivariate Student's t density with covariance matrix $\Omega_t^{(k)}$ and ν degrees of freedom. The covariance matrix depends on k because different counterparties participate in different monetary policy operations. The mean can be set to zero without loss of generality because copula quantiles shift linearly with the mean. We refer to Web Appendix C for all technical details.

The time-varying covariance matrix $\Omega_t^{(k)}$ is typically of a high dimension. For example, more than 800 banks participated in the Eurosystem's second VLTRO program. The high dimensions – and time-varying size – of $\Omega_t^{(k)}$ imply that it is difficult to model directly. We address this issue by working with block equi-correlations within and across countries. These block equi-correlations (Engle and Kelly, 2012) are gathered in a $D \times D$ matrix Σ_t , with $D \ll N_t(k)$, such that $\Omega_t^{(k)} = \Omega_t^{(k)}(\Sigma_t)$ is a function of the lower dimensional Σ_t . The smaller matrix Σ_t depends on a vector of latent factors $f_t \in \mathbb{R}^{D(D-1)/2}$ describing the transformed correlations, such that $\Sigma_t = \Sigma_t(f_t)$. The dynamics of f_t are given by the score-driven specification of Creal et al. (2013), such that the correlations adjust in an optimal way to

⁹The τ_{it} 's are not required at the estimation stage, and are constructed afterwards.

the data at every time t; see Blasques et al. (2015). The transition equation for f_t is

$$f_{t+1} = \bar{f} + A \cdot u_t + B \cdot f_t + C \cdot \operatorname{asym}(y_t, f_t), \tag{4}$$

where \bar{f} is a function of the unconditional correlations of the data and serves as a target for the level of f_t , u_t is a vector of innovation terms, A and B are scalar parameters determining the dynamics of f_t , and $\operatorname{asym}(y_t, f_t)$ is a vector of asymmetry terms that allows for skewness in the unconditional dependence function, with corresponding scalar loading C; see Web Appendix C for more details on model specification and parameter estimation. The parameters A, B, and C need to be estimated. Our empirical application below considers nine banking sector risk indices and five SMP countries, thus $D = 14 \ll N_t(k) \approx 800$ at any t and k; see Sections 2 and 3.2. The correlation model is estimated based on weekly changes in log EDFs.

3.4 Loss-Given-Default (LGD) and Exposure-At-Default (EAD)

Portfolio risk levels depend substantially on the modeling of the loss fraction given default. We distinguish two separate cases: bank and sovereign counterparties.

Collateralized lending to banks within the Eurosystem's liquidity facilities implies a double recourse. If a bank defaults, the central bank can access the pledged collateral and sell it in the market to cover its losses. Conservatively calibrated haircuts on the market value of pledged assets ensure that a sufficient amount of collateral is almost always available to cover losses. Haircuts are higher for more volatile, longer duration, and more credit-risky claims. For example, so-called non-marketable assets carry valuation haircuts of up to 65%. As a result, historical counterparty-level LGDs have been approximately zero for most central banks.

The case of Lehman Brothers can serve as an (extreme) example. Its German subsidiary, Lehman Brothers Bankhaus, defaulted on the Eurosystem on 15 September 2008. In the weeks leading up to the default, a large quantity of mortgage-backed-securities had been posted as collateral that were highly non-liquid and non-marketable at the time. In addition, an untypically large amount of central bank liquidity had been withdrawn just prior to the default. Even so, the posted collateral was ultimately sufficient to recover all losses. The workout-LGD was zero as a result; see Bundesbank (2015).

A substantial loss to the central bank may nevertheless occur in extreme scenarios when both banks and their collateral default simultaneously. This was a valid concern during the sovereign debt crisis. A subset of banks pledged bonds issued by their domestic government, or bank bonds that were eligible only because they were also government-guaranteed. This exposed the central bank to substantial "wrong way risk," as bank and sovereign risks are highly positively dependent in the data.

We incorporate the above observations as follows. For a bank counterparty i, we model LGD stochastically as

$$LGD_{i,t+1:t+52} = 0.02 + 0.58 \cdot 1 \left\{ \tilde{y}_{jt} < \tau_{jt} \text{ for at least one SMP country } j \right\}.$$
(5)

i.e., $LGD_{i,t+1:t+52} = 0.02$ if bank counterparty *i* defaults but no SMP counterparty defaults. The 2% value for bank workout LGDs is not unrealistically low, as explained above. The LGD increases to 60% if bank *i* defaults and at least one SMP sovereign defaults as well (in the same simulation).¹⁰ The 60% value reflects the conservative assumption that a sovereign credit event could be associated with significant spillovers across all euro area banks and sovereigns, leading to an impaired market value for all posted collateral.¹¹ The 60% stressed LGD is furthermore approximately in line with international evidence on government bond haircuts (Cruces and Trebesch (2013, Table 1)), Moody's (2018, p. 8)'s long-horizon LGD estimates for senior unsecured bonds, and the Foundation-IRB approach as referred to in the E.U.'s CRR (2013).

In case of a sovereign counterparty, e.g., for government bonds acquired within the SMP,

¹⁰The multivariate model allows the defaults of banks and sovereigns to be positively correlated. As a result, the adverse feedback loop between banks and sovereigns does not just work through 5.

¹¹Web Appendix E.2 explores what happens to portfolio credit risk if a less conservative LGD specification is adopted. While the multivariate risk model is nonlinear in parameters, its implied EL and ES99% estimates *are* linear in LGD; see (1).

only a single recourse applies. We set the LGD to 60% should such a default be observed,

$$\operatorname{LGD}_{j,t+1:t+52} = 0.60 \cdot 1\left\{\tilde{y}_{jt} < \tau_{jt} \text{ for SMP country } j\right\}.$$
(6)

More elaborate specifications for LGD are clearly also possible. The present approach, however, is parsimonious and conservative, while still sufficiently flexible to capture the issues of systematic variation of LGDs with defaults as well as wrong-way risk between banks and sovereigns.

Exposures-at-default $\text{EAD}_{i,t+1:t+52}(k)$ in (1) can, but do not have to, coincide with currently observed exposure $\text{EXP}_{it}(k)$. Recall that in the case of Lehman Brothers Bankhaus, exposures increased substantially in the weeks prior to the observed default. Similarly, the OMT would likely be activated in extremely bad states of the world. To keep things simple and interpretable, however, we set $\text{EAD}_{i,t+1:t+52}(k) = \text{EXP}_{it}(k)$, also in line with the static balance sheet assumption in Section 3.1. We refer to Web Appendix C for further details.

4 Empirical results

Our empirical study is structured around five interrelated questions. What were the relevant portfolio credit risks associated with each Eurosystem unconventional monetary policy operation during the sovereign debt crisis? How important were risk spillovers across different monetary policy operations? Were the tail risks at all times covered by financial buffers? To what extent did unconventional policies differ in terms of ex-post risk efficiency? Finally, do other central banks' policy announcements materially affect the Eurosystem's risks?

4.1 Model specification

For model selection, we are most interested in whether non-Gaussian dependence as well as the asymmetry term in (4) are preferred by the data. Table 1 reports parameter estimates for three different specifications of the copula model (3)–(4). The model parameters are estimated from D = 9+5 = 14 multivariate time series of daily log changes in banking sector

Table 1: Parameter estimates

Parameter estimates for the copula model (3)–(4) fitted to weekly log changes in D = 14 banking sector and sovereign EDFs between 03 October 2008 and 11 March 2016 (T = 389). The same univariate models are used; see Web Appendix C. The first model specification enforces a multivariate Gaussian copula by setting C = 0 and $\nu^{-1} = 0$. The second and third specifications refer to a symmetric and asymmetric t copula, respectively. Standard errors in parentheses are constructed from the numerical second derivatives of the log-likelihood function.

	Gaussian copula	Student's t copula		
		symmetric	asymmetric	
		(C = 0)	$(C \neq 0)$	
A	0.007	0.007	0.008	
	(0.003)	(0.003)	(0.002)	
В	0.864	0.953	0.969	
	(0.082)	(0.034)	(0.013)	
\mathbf{C}	-	-	-0.555	
	-	-	(0.206)	
ν	-	11.964	11.970	
	-	(0.991)	(0.982)	
logLik	1487.61	1629.49	1631.83	
AICc	-2969.2	-3251.0	-3253.6	

and sovereign EDFs. Univariate Student's t models with time-varying volatility and leverage are used to model the marginal dynamics for each series separately; see Web Appendix C.

Gaussian dependence is a special case of our model, with $\nu^{-1} = 0$ and C = 0. This joint restriction, however, is strongly rejected by the data in a likelihood-ratio test.¹² Turning to the two t copula specifications, allowing for an asymmetric response of the correlation factors is preferred by the data based on the log-likelihood fit and information criteria. The increase in log-likelihood is significant at the 5% level. This model choice has an economically small effect on the expected shortfall estimates, and almost no effect on the mean loss estimates. The degree-of-freedom parameter $\nu \approx 12$ allows for a moderate degree of joint tail dependence in the copula.¹³ Parameter C < 0 implies that correlations *increase* more quickly in bad times than they decrease in good times.¹⁴ Experimenting with block-specific C parameters did not lead to significantly improved log-likelihoods. We select the asymmetric t copula

 $^{12}Web Appendix E.1 presents}$ and discusses EL and ES99% estimates based on the simpler Gaussian model.

¹³The degree-of-freedom parameters ν for the marginal univariate models are substantially lower, and vary between approximately three and eight; see Web Appendix D. The Web Appendix further reports diagnostic checks for all D marginal models. The diagnostic checks are in line with the substantial increase in log-likelihood fit when moving from Gaussian to Student's t models.

¹⁴This is related to the use of polar coordinates (cosines) when mapping f_t into Σ_t ; see Web Appendix C.

specification for the remainder of the analysis based on likelihood fit and information criteria. Using this specification, we combine model parsimony with the ability to explore a rich set of questions given the data at hand.

4.2 Expected shortfall

A large number of studies focus on the beneficial impact of Eurosystem unconventional monetary policies during the euro area sovereign debt crisis on financial markets and macroeconomic outcomes, including Eser and Schwaab (2016), Ghysels et al. (2017), Krishnamurthy et al. (2018), Fratzscher and Rieth (2018), De Pooter et al. (2018), among many others. By contrast, the risk implications and potential downsides of unconventional policies have received less attention.

Figure 4 plots estimated one-year-ahead ES99% from Eurosystem collateralized lending operations (top panel) and SMP asset purchases (bottom panel). Portfolio-specific estimates are (sub)additive across operations, and stacked vertically in the top panel of Figure 4. The loss density is obtained by simulation, using 200,000 draws at each time t; see Web Appendix C.6 for details. For each simulation, we keep track of exceedances of \tilde{y}_{it} below their respective calibrated thresholds at time t as well as the outcomes for LGD and EAD, as described in Section 3. The risk estimates combine all exposure data, marginal risks, as well as all 14(14-1)/2=91 time-varying correlation estimates into a single time series per operation.

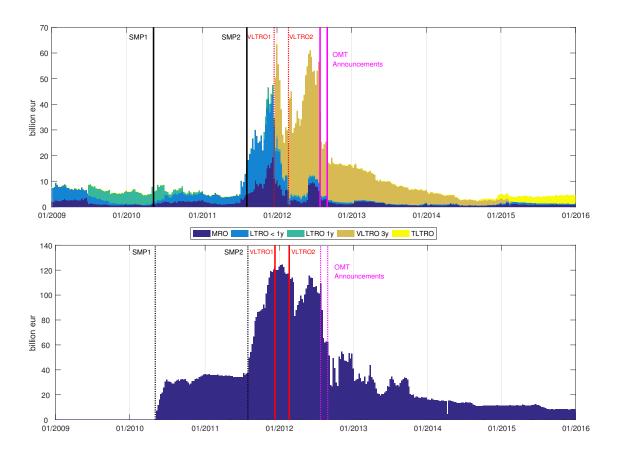
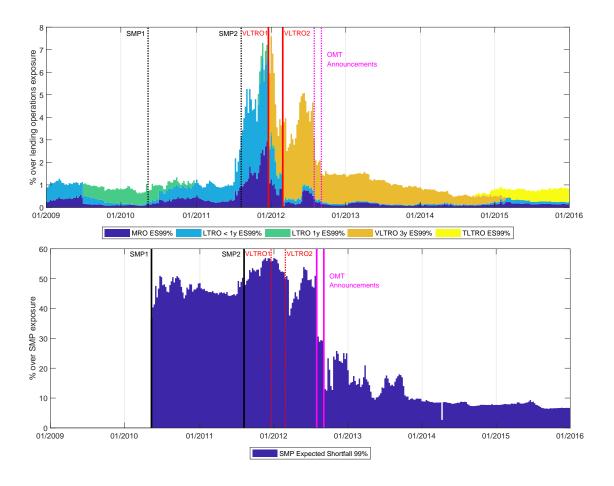

The ES99% estimates in Figure 4 exhibit pronounced time series variation, peaking in 2012 at approximately $\in 60$ bn for the collateralized lending operations and at approximately $\in 120$ bn for the SMP portfolio. All portfolio tail risks collapse sharply following the OMT announcements.¹⁵

Figure 5 provides the ES99% scaled per $\in 1$. The changes in portfolio credit risks around key policy dates can be decomposed into a risk (PD and correlation) component and an exposure component. Figure 5 suggests that the risk component is the main driver. For

 $^{^{15}}$ To the extent that redenomination risk is priced in sovereign CDS contracts, redenomination risk is a part of the portfolio credit risks as plotted in Figures 4 and 5. Redenomination risk is most likely relevant for the SMP portfolio; the collateralized lending portfolios may be sensitive to redenomination risk via the LGD specification (5).

Figure 4: ES99% for collateralized lending and SMP portfolios

Top panel: ES99% in \in bn for five Eurosystem collateralized lending operations. Bottom panel: ES99% for SMP asset portfolio. Six vertical lines mark the events described in Section 2. Data is weekly between 2009 and 2015.



example, the ES99% decreases from approximately 55 cent per $\in 1$ of SMP exposures before the allotment of the first VLTRO to less than 40 cent following the allotment of the second VLTRO. As another example, the ES99% collapses from approximately 50 cent per $\in 1$ of SMP exposures before the OMT announcements in mid-2012 to less than 20 cent per $\in 1$ afterwards. Regarding collateralized lending, the ES99% decreases from approximately 4.5 cent per $\in 1$ of exposures before the OMT announcements to less than 2 cents following the second announcement.

When comparing the top and bottom panels of Figure 5, portfolio risk per $\in 1$ of exposure differs by approximately one order of magnitude. The risk differential between collateralized lending and outright holdings is even more pronounced at the center of the loss distribution;

Figure 5: ES99% in percent of exposures

Top panel: ES99% for five collateralized lending portfolios in percent of total collateralized exposures, stacked vertically. Bottom panel: ES99% for SMP assets in percent of total nominal (par) value. The vertical lines mark the events described in Section 2. Data is weekly between 2009 and 2015.

see Web Appendix F. Such pronounced differences in portfolio risk may be relevant for the decision whether to provide additional central bank liquidity via collateralized lending operations or via outright asset purchases. Implementing monetary policy via credit operations could be preferable in settings when the respective economic benefits are comparable.

Finally, Figures 4 and Figures 5 strongly hint at the presence of beneficial spillovers across monetary policy operations. For example, the OMT announcements had a pronounced impact on the ES99% associated with the collateralized lending and the SMP asset portfolios. As another example, the weeks around the first VLTRO allotment coincide with peak SMP ES99% in percent of exposures.

4.3 Financial buffers

This section studies whether the Eurosystem was at all times sufficiently able to withstand the materialization of a 99% ES-sized credit loss.

For a commercial bank, financial buffers against a large portfolio loss typically include accounting items such as the current year's projected annual income, revaluation reserves in the balance sheet, general risk provisions, and paid-in equity capital. We adopt a similar notion of financial buffers for the Eurosystem. We recall, however, that a central bank is never liquidity constrained in the currency they issue, so that the notion of solvency buffers is much less appropriate.

Since the financial crisis in 2008, the Eurosystem as a whole has built up relatively large financial buffers, including from part of the stream of seignorage revenues generated by banknote issuance. Those buffers are mainly in the form of capital and reserves (i.e., paid-up capital, legal reserves and other reserves), revaluation accounts (i.e., unrealized gains on certain assets like gold) and risk provisions. These items stood at \in 88 bn, \in 407 bn and \in 57 bn, respectively, at the end of 2012; see ECB (2013, p. 44). The overall financial buffers therefore stood at \in 552 bn. Comparing these balance sheet items with our ES estimates in Figure 4 we conclude that the Eurosystem's aggregate buffers were at all times sufficient to withstand an ES99%-sized credit loss, even at the mid-2012 peak of the euro area sovereign debt crisis.

4.4 Risk spillovers across policy operations

The credit risk of the Eurosystem's balance sheet depends on the financial health of its counterparties, which in turn depends on expectations about the central bank's liquidity provision to and asset purchases from those same counterparties. This interdependence can give rise to a pronounced nonlinearity in the central bank balance sheet risks, e.g. as the economy switches from a 'bad' equilibrium to a 'good' one; see e.g. Calvo (1988), Reis (2013), and ECB (2014). This section studies how a central bank's credit risk respond to the announcement (and subsequent implementation) of unconventional monetary policies.

Table 2:	Portfolio	credit r	isks around	six ke	v policy	announcements,	L	/II	
10010 2.	1 01 01 0110	orouro r	iono arouna	0171 110	y poney	announcontono,	- /		-

Portfolio credit risks for different monetary policy operations around six policy announcements: the SMP announcement on 10 May 2010, the cross-sectional extension of the SMP on 08 August 2011, and the allocation of the first VLTRO on 20 December 2011. Square brackets [] contain 99% confidence intervals obtained from 200,000 simulation runs. Web Appendix G presents the analogous results in percent of the respective exposures. The table continues on the next page.

SMP1	07/0	07/05/2010 14/05/2010				
	EL	ES99%	EL	ES99%	ΔEL	$\Delta \mathrm{ES99\%}$
SMP	0.0	0.0	0.3	7.3	0.3	7.3
	[0.0 0.0]	[0.0 0.0]	$[0.3 \ 0.3]$	$[7.3 \ 7.4]$		
MRO	0.0	1.1	0.0	1.0	0.0	-0.1
	[0.0 0.0]	$[0.9 \ 1.2]$	[0.0 0.0]	$[0.8 \ 1.0]$		
LTRO<1y	0.0	0.6	0.0	0.5	-0.0	-0.1
	[0.0 0.0]	$[0.5 \ 0.7]$	[0.0 0.0]	[0.5 0.6]		
LTRO1y	0.2	6.2	0.2	4.1	-0.0	-2.1
	$[0.2 \ 0.2]$	$[5.1 \ 6.4]$	$[0.2 \ 0.2]$	$[4.1 \ 4.7]$		
Total	0.2	7.9	0.5	13.0	0.3	5.1
SMP2	05/0	8/2011	10/0	8/2011		
SIMP 2	EL 05/0	ES99%	EL 12/0	ES99%	ΔEL	$\Delta \mathrm{ES99\%}$
SMP	5.2	38.0	6.7	49.9	<u> </u>	$\frac{\Delta E 59970}{11.9}$
SMI	$[5.2 \ 5.2]$	$[37.7 \ 38.2]$	$[6.7 \ 6.8]$	$[49.3 \ 50.1]$	1.0	11.9
MRO	$\frac{[0.2 \ 0.2]}{0.1}$	$\frac{[37.7 \ 50.2]}{4.5}$	0.1	4.8	0.0	0.4
MIIIO	$[0.1 \ 0.1]$	$[4.0 \ 4.8]$	$[0.1 \ 0.1]$	[4.2 5.5]	0.0	0.4
LTRO<1y	$0.1 \ 0.1$	[4.0 4.0] 8.5	0.3	10.9	0.0	2.4
LINO (Iy	$[0.2 \ 0.2]$	$[7.0 \ 9.2]$	$[0.2 \ 0.3]$	$[9.0 \ 11.1]$	0.0	2.4
Total	5.5	51.0	7.1	65.6	1.5	14.7
					1.0	
VLTRO1	16/1	2/2011	30/1	2/2011		
	EL	ES99%	EL	ES99%	ΔEL	$\Delta \mathrm{ES99\%}$
SMP	26.8	122.2	25.3	120.1	-1.5	-2.1
	$[26.7 \ 26.9]$	$[121.9 \ 122.5]$	$[25.3 \ 25.4]$	$[119.4 \ 120.4]$		
MRO	0.3	19.3	0.2	9.1	-0.1	-10.2
	$[0.3 \ 0.3]$	$[17.7 \ 21.3]$	$[0.2 \ 0.2]$	$[8.5 \ 10.0]$		
LTRO<1y	0.5	24.4	0.3	12.8	-0.2	-11.5
	[0.5 0.5]	$[21.3 \ 24.7]$	[0.3 0.3]	$[12.0 \ 13.6]$		
LTRO1y	0.1	3.9	0.0	1.0	-0.0	-2.9
	[0.1 0.1]	$[3.5 \ 4.1]$	[0.0 0.0]	[0.9 1.0]		
VLTRO3y	0.0	0.0	0.5	27.6	0.5	27.6
	[0.0 0.0]	[0.0 0.0]	[0.4 0.5]	$[26.0 \ 28.8]$		
Total	27.7	169.8	26.3	170.6	-1.4	0.8

The high (weekly) frequency of the risk estimates plotted in Figures F.1 and 4 allow us to identify the impact of certain key ECB policy announcements. Table 2 presents standard portfolio risk estimates shortly before and after six key policy announcements.

We obtain the following main findings. First, LOLR- and IOLR-implied credit risks are usually negatively related in our sample. Taking risk in one part of the central bank's balance

Table 2: Portfolio credit risks around six key policy announcements, II/II

Portfolio credit risks for different monetary policy operations around six policy announcements (continued): the allocation of the second VLTRO on 20 February 2012, the OMT announcement on 02 August 2012, and the announcement of the OMT's technical details on 06 September 2012. Square brackets [] contain 99% confidence intervals obtained from 200,000 simulation runs. Web Appendix G presents the analogous results in percent of the respective exposures.

VLTRO2	24/02/2012 09/03/2012					
	EL	ES99%	EL	ES99%	ΔEL	$\Delta \mathrm{ES99\%}$
SMP	30.2	117.2	30.2	113.9	0.0	-3.3
	$[30.1 \ 30.2]$	$[116.1 \ 118.3]$	$[30.2 \ 30.3]$	$[112.2 \ 114.5]$		
MRO	0.2	6.7	0.0	0.7	-0.1	-6.0
	$[0.1 \ 0.2]$	$[6.5 \ 7.2]$	$[0.0 \ 0.0]$	$[0.7 \ 0.8]$		
LTRO<1y	0.1	5.2	0.1	2.3	-0.1	-2.9
	$[0.1 \ 0.1]$	[4.6 5.4]	[0.1 0.1]	$[2.0 \ 2.4]$		
LTRO1y	0.0	0.5	0.0	0.6	0.0	0.1
	[0.0 0.0]	[0.5 0.6]	[0.0 0.0]	[0.5 0.6]		
VLTRO3y	0.3	17.3	0.6	38.6	0.3	21.3
	[0.3 0.3]	$[15.1 \ 19.0]$	[0.6 0.6]	$[34.1 \ 39.3]$		
Total	30.8	147.0	31.0	156.1	0.2	9.1
0)(7)	0-10	F /2012	00.10	0 /2012		
OMT1	/	7/2012		8/2012	A 171	
CMD	EL	ES99%	EL	ES99%	ΔEL	$\Delta ES99\%$
SMP	21.5	109.8	19.8	87.8	-1.7	-22.0
	[21.4 21.5]	[107.9 110.4]	[19.8 19.9]	[85.8 88.6]		
MRO	0.2	6.2	0.2	4.5	-0.0	-1.8
	$[0.2 \ 0.2]$	$[5.4 \ 6.7]$	$[0.2 \ 0.2]$	$[3.9 \ 4.7]$		
LTRO<1y	0.1	2.9	0.1	1.9	-0.0	-1.1
	$[0.1 \ 0.1]$	$[2.7 \ 3.5]$	$[0.1 \ 0.1]$	$[1.9 \ 2.4]$	0.0	0.1
LTRO1y	0.0	0.4	0.0	0.3	-0.0	-0.1
VITTO	$[0.0 \ 0.0]$	$[0.4 \ 0.4]$	$[0.0 \ 0.0]$	$[0.3 \ 0.3]$	0.0	10 5
VLTRO3y	1.0	47.0	0.8	30.5	-0.2	-16.5
	[0.9 1.0]	[38.3 47.7]	[0.8 0.8]	[29.4 33.8]	1.0	41.4
Total	22.8	166.4	20.9	125.0	-1.9	-41.4
OMT2	31/0	8/2012	07/0	9/2012		
01111	EL	ES99%	EL	ES99%	ΔEL	$\Delta ES99\%$
SMP	15.8	62.4	14.5	51.5	-1.3	-10.8
	[15.7 15.8]	$[61.0 \ 63.0]$	[14.4 14.5]	$[51.1 \ 52.5]$		
MRO	0.2	3.1	0.1	2.0	-0.0	-1.1
	$[0.2 \ 0.2]$	$[2.4 \ 2.9]$	$[0.1 \ 0.1]$	$[1.8 \ 2.1]$		
LTRO<1y	0.0	1.3	0.0	1.0	-0.0	-0.3
	$[0.0 \ 0.1]$	$[1.1 \ 1.4]$	[0.0 0.0]	[0.9 1.1]		
LTRO1y	0.0	0.2	0.0	0.2	-0.0	-0.1
~	[0.0 0.0]	$[0.2 \ 0.2]$	[0.0 0.0]	$[0.1 \ 0.2]$		
VLTRO3y	0.7	20.9	0.5	15.0	-0.1	-5.9
·	[0.6 0.7]	$[18.7 \ 21.7]$	[0.5 0.6]	$[14.7 \ 16.2]$		
Total	16.6	87.8	15.2	69.7	-1.5	-18.1

sheet (e.g., the announcement of SMP asset purchases in May 2010) tended to de-risk other positions (e.g., collateralized lending from previous LTROs, by approximately $\in 2.2$ bn). Vice versa, the allotment of the two large-scale VLTRO credit operations each decreased the expected shortfall of the SMP asset portfolio (by $\in 2.1$ bn and $\in 3.3$ bn, respectively). This negative relationship strongly suggests that central bank risks can be nonlinear (concave) in exposures. The increase in balance sheet size increased overall credit risk less than proportionally, and by less than one would have expected at unchanged PD and risk dependence parameters. As a result, increasing balance sheet size during a financial crisis is unlikely to increase risk by as much as one would expect from linearly scaling up current portfolio risks with future exposures. Similarly, in the context of ultimately unwinding balance sheet positions, reducing the size of the balance sheet after the crisis may not reduce total risk by as much as one would expect from linear scaling. Arguably, the documented risk spillovers call for a measured approach towards reducing balance sheet size after the crisis has passed.

Second, a subset of unconventional monetary policies reduced (rather than added to) overall balance sheet risk. For example, the first OMT announcement de-risked the Eurosystem's balance sheet by \in 41.4 bn (99%-ES). The announcement of OMT technical details on 06 September 2012 was also associated with a strong further reduction of \in 18.1 bn in 99% ES. As another example, the allotment of the first VLTRO in December 2011 raised the 99% ES associated with VLTRO lending from zero to approximately \in 27.6 bn. However, it also sharply reduced the need for shorter-term MRO and LTRO funding, reducing exposures for these portfolios. In addition, financial sector point-in-time PDs declined as banks were awash in cash following the first VLTRO allotment. Finally, and importantly, the VLTRO allotment also de-risked the SMP asset portfolio, as banks funneled some of the additional liquidity into government bonds (Acharya and Steffen (2015), Drechsler et al. (2016)), alleviating stressed sovereigns' funding stress. As a result, the overall 99% ES increased, but only minimally so, by \in 0.8 bn. Expected losses declined by \in 1.4 bn. We conclude that, in extreme conditions, a central bank can de-risk its balance sheet by doing *more*.

Such risk reductions are not guaranteed, however. In particular the SMP2 announcement is an exception to the patterns described above; see Table 2. The extension of the program to include Spain and Italy in August 2011 did not reduce the credit risks inherent in the collateralized lending book. It also did not lead to a reduction in total risk. This exception is probably related to the pronounced controversy regarding the extension of the SMP at that time. The controversy as well as the related communication challenges may have caused market participants to doubt that the SMP would be large and active for long, thus lessening its economic and risk impact.

Third, portfolio risk estimates as reported in Figures 4 and 5 are a prerequisite for evaluating policy operations in terms of their "risk efficiency." Risk efficiency is the principle that a certain amount of expected policy impact should be achieved with a minimum level of balance sheet risk; see e.g. ECB (2015). Put differently, the impact of any policy operation should be maximal given a certain level of risk. Given an estimate of policy impact, such as, for example, a change in inflation swap rates or in bond yields around the time of a policy announcement, and given an estimate of additional risk, such as, for example, a change in expected shortfall, different policy operations can be evaluated by scaling the former by the latter. Web Appendix H reports our respective findings. To summarize, we find that the first round of SMP purchases in 2010 was more risk efficient than the second round following the SMP's extension to include Italy and Spain in 2011. The first VLTRO allotment was more risk efficient than its second allotment. The OMT program was particularly risk efficient ex-post.

Finally, monetary policy-related announcements of *other* central banks could in principle spill over and affect the Eurosystem's risks via an impact on its counterparties. For example, the Federal Reserve's announcement to 'taper off' asset purchases in May 2013, or the announcement by the Swiss National Bank to unpeg the Swiss Franc from the Euro in January 2015, could have had a discernible impact on the Eurosystem's portfolio credit risks via an impact on the euro area financial sector or its risk correlations with sovereigns. We do not find economically large effects when studying a small but relevant set of such announcements; see Web Appendix I for details.

5 Conclusion

We introduced a tractable framework to measure central bank balance sheet risks at a high frequency and applied it to all major Eurosystem unconventional monetary policy operations during the euro area sovereign debt crisis between 2010 and 2012. Our results suggest that central banks can influence their credit risks, particularly when they act as lendersand investors-of-last-resort during turbulent times. They can use this to their advantage when implementing monetary policy in a risk-efficient way. For instance, though increasing the amount of central bank liquidity in the financial system for monetary policy purposes can be achieved via both credit operations and asset purchases, we find that collateralized credit operations imply substantially less credit risks per unit of liquidity provision, often by an order of magnitude. In short, our findings that central banks can influence their own credit risks in turbulent times give some, albeit not complete, support to Bagehot's famous conjecture that occasionally "only the brave plan is the safe plan."

References

- Acharya, V., D. Pierret, and S. Steffen (2018). Lender of last resort, buyer of last resort, and a fear of fire sales in the sovereign bond market. *mimeo*.
- Acharya, V. and S. Steffen (2015). The "greatest" carry trade ever? Understanding eurozone bank risks. Journal of Financial Economics 115, 215–236.
- Bagehot, W. (1873). Lombard Street: A Description of the Money Market. London: Henry S. King & Co.
- Bindseil, U. (2014). Monetary policy operations and the financial system. Oxford University Press.
- Bindseil, U. and L. Laeven (2017). Confusion about the lender-of-last-resort. Vox EU, www.voxeu.org.
- Blasques, F., S. J. Koopman, and A. Lucas (2015). Information theoretic optimality of observation driven time series models for continuous responses. *Biometrika* 102(2), 325–343.

- Böhme, H. (2014). The ECB is becoming Europe's 'bad bank'. DW Business, from 02.10.2014, obtained from http://p.dw.com/p/1DPCF.
- Brendel, M. and C. Pauly (2011). Europe's Central Bad Bank: Junk bonds weigh heavy on ECB. Der Spiegel, on June 06, 2011.
- Buiter, W. and E. Rahbari (2012). Looking into the deep pockets of the ECB. Citi Global Economics View, 27 February 2012, 1–55.
- Bundesbank (2015). Bundesbank hat letzte Zahlung aus dem deutschen Lehman-Insolvenzverfahren erhalten. press release dated 10 February 2015.
- Calvo, G. (1988). Servicing the public debt: The role of expectations. American Economic Review 78(4), 647–661.
- Carpenter, S. B., J. E. Ihrig, E. C. Klee, D. W. Quinn, and A. H. Boote (2013). The Federal Reserves balance sheet and earnings: A primer and projections. *Finance and Economics Discussion Series no. 2013-1, Federal Reserve Board, January.*, 1–30.
- Cheun, S., I. von Köppen-Mertes, and B. Weller (2009). The collateral frameworks of the Eurosystem, the Federal Reserve System, and the Bank of England, and the financial market turmoil. *ECB Occasional Paper 107*, 1–61.
- Christensen, J. H. E., J. A. Lopez, and G. D. Rudebusch (2015). A probability-based stress test of Federal Reserve assets and income. *Journal of Monetary Economics* 73, 26–43.
- Corsetti, G. and L. Dedola (2016). The mystery of the printing press: Monetary policy and selffulfilling debt crises. *Journal of the European Economic Association* 14(6), 1329–1371.
- Creal, D., S. Koopman, and A. Lucas (2011). A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. *Journal of Business & Economic Statistics* 29(4), 552–563.
- Creal, D., S. Koopman, and A. Lucas (2013). Generalized autoregressive score models with applications. Journal of Applied Econometrics 28(5), 777–795.
- CreditMetrics (2007). CreditMetrics (TM) Technical Document, RiskMetrics Group. www.riskmetrics.com/pdf/dnldtechdoc/CMTD1.pdf.

- Crosbie, P. and J. R. Bohn (2003). Modeling default risk. *Moody's KMV Company, available* online..
- CRR (2013). Regulation (EU) No 575/2013 of the European Parliament and of the Council on prudential requirements for credit institutions. Official Journal of the European Union 176(1), 1–373.
- Cruces, J. J. and C. Trebesch (2013). Sovereign defaults: The price of haircuts. American Economic Journal: Macroeconomics 5(3), 85–117.
- de Andoain, C. G., F. Heider, M. Hoerova, and S. Manganelli (2016). Lender-of-last-resort is as lending-of-last-resort does: Central bank liquidity provision and interbank market functioning in the euro area. *Journal of Financial Intermediation 28*, 32–47.
- De Pooter, M., R. Martin, and S. Pruitt (2018). The liquidity effects of official bond market intervention in Europe. *Journal of Financial and Quantitative Analysis* 53(1), 243–268.
- Del Negro, M. and C. A. Sims (2015). When does a Central Bank's balance sheet require fiscal support? *Federal Reserve Bank of New York Staff Reports 701*.
- Diamond, D. W. and P. H. Dybvig (1983). Bank runs, deposit insurance, and liquidity. The Journal of Political Economy 91(3), 401–419.
- Drechsler, I., T. Drechsel, P. Schnabel, and D. Marques (2016). Who borrows from the lender of last resort? *Journal of Finance* 71(5), 1933–1974.
- Duffie, D., A. Eckner, G. Horel, and L. Saita (2009). Frailty correlated default. Journal of Finance 64(5), 2089–2123.
- ECB (2007). The use of portfolio credit risk models in central banks. ECB Occasional Paper, by the Task Force of the Market Operations Committee of the European System of Central Banks 64, European Central Bank.
- ECB (2013). ECB Monthly Bulletin, September 2013. available at www.ecb.int.
- ECB (2014). The determinants of euro area sovereign bond yield spreads during the crisis. ECB Monthly Bulletin article, May 2014.
- ECB (2015). The financial risk management of the Eurosystem's monetary policy operations. European Central Bank, available at www.ecb.int.

- Engle, R. and B. Kelly (2012). Dynamic equicorrelation. Journal of Business & Economic Statistics 30(2), 212–228.
- Eser, F. and B. Schwaab (2016). Evaluating the impact of unconventional monetary policy measures: Empirical evidence from the ECB's Securities Markets Programme. Journal of Financial Economics 119(1), 147–167.
- Fratzscher, M. and M. Rieth (2018). Monetary policy, bank bailouts and the sovereign-bank risk nexus in the euro area. *Review of Finance, forthcoming*.
- Freixas, X., C. Giannini, G. Hoggarth, and F. Soussa (2004). Lender of last resort: What have we learned since Bagehot. *Journal of Financial Services Research* 18(1), 63–84.
- Ghysels, E., J. Idier, S. Manganelli, and O. Vergote (2017). A high frequency assessment of the ECB Securities Markets Programme. Journal of European Economic Association 15, 218–243.
- Greenlaw, D., J. D. Hamilton, P. Hooper, and F. Mishkin (2013). Crunch time: Fiscal crises and the role of monetary policy. *Finance and Economics Discussion Series no. 2013-1, Federal Reserve Board, January.*, 1–30.
- Krishnamurthy, A., S. Nagel, and A. Vissing-Jorgensen (2018). ECB policies involving government bond purchases: Impact and channels. *Review of Finance* 22(1), 1–44.
- Lando, D. (2003). Credit risk modelling Theory and applications. Princeton University Press.
- Lucas, A., B. Schwaab, and X. Zhang (2014). Conditional euro area sovereign default risk. *Journal* of Business and Economic Statistics 32(2), 271–284.
- Lucas, A., B. Schwaab, and X. Zhang (2017). Modeling financial sector joint tail risk in the euro area. *Journal of Applied Econometrics* 32(1), 171–191.
- McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press.
- Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. *Journal* of Finance 29(2), 449–470.
- Moody's (2018). Moody's Investor Service: Cross-sector Data Report, 15 February 2018. pp. 1–60.

- Reis, R. (2013). The mystique surrounding the central bank's balance sheet, applied to the European crisis. *American Economic Review* 103(3), 135–140.
- Reis, R. (2015). Different types of central bank insolvency and the central role of seignorage. Journal of Monetary Economics 73, 20–25.
- Reis, R. (2018). Central banks going long. In A. Aguirre, M. Brunnermeier, and D. Saravia (Eds.), Monetary Policy and Financial Stability: Transmission Mechanisms and Policy Implications. Central Bank of Chile, Santiago.
- Reis, R. (2019). The new conventional central bank. mimeo, and LSE Phillips lecture delivered on the 25th of April 2018.
- Rochet, J.-C. and X. Vives (2004). Coordination failures and the lender of last resort: Was Bagehot right after all? *Journal of the European Economic Association* 2(6), 1116–1147.
- Rogers, J. H., C. Scotti, and J. H. Wright (2014). Evaluating asset-market effects of unconventional monetary policy: a multi-country review. *Economic Policy* 29(80), 749–799.
- Salmon, F. (2009). Recipe for desaster: The formula that killed Wall Street. Business Magazine, on 23 February 2009.
- Thornton, H. (1802). An enquiry into the nature and effects of paper credit of Great Britain. Hatchard, London.

Earlier Working Papers:

For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents by Henrik Amilon	2005:177
Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap by Mikael Apel and Per Jansson	2005:178
Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2005:179
Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy DSGE Model of the Euro Area <i>by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani</i>	2005:180
Inference in Vector Autoregressive Models with an Informative Prior on the Steady State by Mattias Villani	2005:181
Bank Mergers, Competition and Liquidity by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo	2005:182
Testing Near-Rationality using Detailed Survey Data by Michael F. Bryan and Stefan Palmqvist	2005:183
Exploring Interactions between Real Activity and the Financial Stance by Tor Jacobson, Jesper Lindé and Kasper Roszbach	2005:184
Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs by Mats A. Bergman	2005:185
Trade Deficits in the Baltic States: How Long Will the Party Last? by Rudolfs Bems and Kristian Jönsson	2005:186
Real Exchange Rate and Consumption Fluctuations follwing Trade Liberalization by Kristian Jönsson	2005:187
Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks by Malin Adolfson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin	2005:188
Bayesian Inference of General Linear Restrictions on the Cointegration Space by Mattias Villani	2005:189
Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2005:190
Forecast Combination and Model Averaging using Predictive Measures by Jana Eklund and Sune Karlsson	2005:191
Swedish Intervention and the Krona Float, 1993-2002 by Owen F. Humpage and Javiera Ragnartz	2006:192
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro by Hans Lindblad and Peter Sellin	2006:193
Testing Theories of Job Creation: Does Supply Create Its Own Demand? by Mikael Carlsson, Stefan Eriksson and Nils Gottfries	2006:194
Down or Out: Assessing The Welfare Costs of Household Investment Mistakes by Laurent E. Calvet, John Y. Campbell and Paolo Sodini	2006:195
Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models by Paolo Giordani and Robert Kohn	2006:196
Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy by Karolina Holmberg	2006:197
Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data by Mikael Carlsson and Jon Smedsaas	2006:198
Monetary Policy and Staggered Wage Bargaining when Prices are Sticky by Mikael Carlsson and Andreas Westermark	2006:199
The Swedish External Position and the Krona by Philip R. Lane	2006:200

Price Setting Transactions and the Role of Denominating Currency in FX Markets by Richard Friberg and Fredrik Wilander	2007:201
The geography of asset holdings: Evidence from Sweden by Nicolas Coeurdacier and Philippe Martin	2007:202
Evaluating An Estimated New Keynesian Small Open Economy Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2007:203
The Use of Cash and the Size of the Shadow Economy in Sweden by Gabriela Guibourg and Björn Segendorf	2007:204
Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns by Sophie Claeys and Koen Schoors	2007:205
Optimal Monetary Policy under Downward Nominal Wage Rigidity by Mikael Carlsson and Andreas Westermark	2007:206
Financial Structure, Managerial Compensation and Monitoring by Vittoria Cerasi and Sonja Daltung	2007:207
Financial Frictions, Investment and Tobin's q by Guido Lorenzoni and Karl Walentin	2007:208
Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework by Mathias Trabandt	2007:209
Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates by Sophie Claeys and Christa Hainz	2007:210
Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures by Mattias Villani, Robert Kohn and Paolo Giordani	2007:211
The Costs of Paying – Private and Social Costs of Cash and Card by Mats Bergman, Gabriella Guibourg and Björn Segendorf	2007:212
Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts by Peter Sellin	2007:213
Introducing Financial Frictions and Unemployment into a Small Open Economy Model by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin	2007:214
Earnings Inequality and the Equity Premium by Karl Walentin	2007:215
Bayesian forecast combination for VAR models by Michael K. Andersson and Sune Karlsson	2007:216
Do Central Banks React to House Prices? by Daria Finocchiaro and Virginia Queijo von Heideken	2007:217
The Riksbank's Forecasting Performance by Michael K. Andersson, Gustav Karlsson and Josef Svensson	2007:218
Macroeconomic Impact on Expected Default Freqency by Per Åsberg and Hovick Shahnazarian	2008:219
Monetary Policy Regimes and the Volatility of Long-Term Interest Rates by Virginia Queijo von Heideken	2008:220
Governing the Governors: A Clinical Study of Central Banks by Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo	2008:221
The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates by Hans Dillén	2008:222
How Important are Financial Frictions in the U S and the Euro Area by Virginia Queijo von Heideken	2008:223
Block Kalman filtering for large-scale DSGE models by Ingvar Strid and Karl Walentin	2008:224
Optimal Monetary Policy in an Operational Medium-Sized DSGE Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson	2008:225
Firm Default and Aggregate Fluctuations by Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach	2008:226
Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model by Ulf Söderström	2008:227

The Effect of Cash Flow on Investment: An Empirical Test of the Balance Sheet Channel by Ola Melander	2009:228
Expectation Driven Business Cycles with Limited Enforcement by Karl Walentin	2009:229
Effects of Organizational Change on Firm Productivity by Christina Håkanson	2009:230
Evaluating Microfoundations for Aggregate Price Rigidities: Evidence from Matched Firm-Level Data on Product Prices and Unit Labor Cost by Mikael Carlsson and Oskar Nordström Skans	2009:231
Monetary Policy Trade-Offs in an Estimated Open-Economy DSGE Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson	2009:232
Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities by Feng Li, Mattias Villani and Robert Kohn	2009:233
Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction by Paolo Giordani and Mattias Villani	2009:234
Evaluating Monetary Policy by Lars E. O. Svensson	2009:235
Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model by Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters	2010:236
Picking the Brains of MPC Members by Mikael Apel, Carl Andreas Claussen and Petra Lennartsdotter	2010:237
Involuntary Unemployment and the Business Cycle by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin	2010:238
Housing collateral and the monetary transmission mechanism by Karl Walentin and Peter Sellin	2010:239
The Discursive Dilemma in Monetary Policy by Carl Andreas Claussen and Øistein Røisland	2010:240
Monetary Regime Change and Business Cycles by Vasco Cúrdia and Daria Finocchiaro	2010:241
Bayesian Inference in Structural Second-Price common Value Auctions by Bertil Wegmann and Mattias Villani	2010:242
Equilibrium asset prices and the wealth distribution with inattentive consumers by Daria Finocchiaro	2010:243
Identifying VARs through Heterogeneity: An Application to Bank Runs by Ferre De Graeve and Alexei Karas	2010:244
Modeling Conditional Densities Using Finite Smooth Mixtures by Feng Li, Mattias Villani and Robert Kohn	2010:245
The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours by Luca Sala, Ulf Söderström and Antonella Trigari	2010:246
Density-Conditional Forecasts in Dynamic Multivariate Models by Michael K. Andersson, Stefan Palmqvist and Daniel F. Waggoner	2010:247
Anticipated Alternative Policy-Rate Paths in Policy Simulations by Stefan Laséen and Lars E. O. Svensson	2010:248
MOSES: Model of Swedish Economic Studies by Gunnar Bårdsen, Ard den Reijer, Patrik Jonasson and Ragnar Nymoen	2011:249
The Effects of Endogenuos Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy by Lauri Vilmi	2011:250
Parameter Identification in a Estimated New Keynesian Open Economy Model by Malin Adolfson and Jesper Lindé	2011:251
Up for count? Central bank words and financial stress by Marianna Blix Grimaldi	2011:252
Wage Adjustment and Productivity Shocks by Mikael Carlsson, Julián Messina and Oskar Nordström Skans	2011:253

Stylized (Arte) Facts on Sectoral Inflation by Ferre De Graeve and Karl Walentin	2011:254
Hedging Labor Income Risk by Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden	2011:255
Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios by Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani	2011:256
Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment by Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach	2012:257
On the Non-Exclusivity of Loan Contracts: An Empirical Investigation by Hans Degryse, Vasso Ioannidou and Erik von Schedvin	2012:258
Labor-Market Frictions and Optimal Inflation by Mikael Carlsson and Andreas Westermark	2012:259
Output Gaps and Robust Monetary Policy Rules by Roberto M. Billi	2012:260
The Information Content of Central Bank Minutes by Mikael Apel and Marianna Blix Grimaldi	2012:261
The Cost of Consumer Payments in Sweden	2012:262
by Björn Segendorf and Thomas Jansson	
Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis	2012:263
by Tor Jacobson and Erik von Schedvin	
Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence	2012:264
by Luca Sala, Ulf Söderström and Antonella Trigari	
Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE	2013:265
by Rob Alessie, Viola Angelini and Peter van Santen	
Long-Term Relationship Bargaining	2013:266
by Andreas Westermark	
Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR*	2013:267
by Stefan Pitschner	
DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA	2013:268
by Matias Quiroz and Mattias Villani	
Conditional euro area sovereign default risk	2013:269
by André Lucas, Bernd Schwaab and Xin Zhang	
Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*	2013:270
by Roberto M. Billi	
Un-truncating VARs*	2013:271
by Ferre De Graeve and Andreas Westermark	
Housing Choices and Labor Income Risk	2013:272
by Thomas Jansson	
Identifying Fiscal Inflation*	2013:273
by Ferre De Graeve and Virginia Queijo von Heideken	
On the Redistributive Effects of Inflation: an International Perspective*	2013:274
by Paola Boel	
Business Cycle Implications of Mortgage Spreads*	2013:275
by Karl Walentin	
Approximate dynamic programming with post-decision states as a solution method for dynamic	2013:276
economic models by Isaiah Hull	
A detrimental feedback loop: deleveraging and adverse selection	2013:277
by Christoph Bertsch	0040.070
Distortionary Fiscal Policy and Monetary Policy Goals	2013:278
by Klaus Adam and Roberto M. Billi	2012:070
Predicting the Spread of Financial Innovations: An Epidemiological Approach by Isaiah Hull	2013:279
Firm-Level Evidence of Shifts in the Supply of Credit	2013:280
by Karolina Holmberg	

Lines of Credit and Investment: Firm-Level Evidence of Real Effects of the Financial Crisis by Karolina Holmberg	2013:281
A wake-up call: information contagion and strategic uncertainty	2013:282
by Toni Ahnert and Christoph Bertsch	
Debt Dynamics and Monetary Policy: A Note	2013:283
by Stefan Laséen and Ingvar Strid	
Optimal taxation with home production	2014:284
by Conny Olovsson	
Incompatible European Partners? Cultural Predispositions and Household Financial Behavior	2014:285
by Michael Haliassos, Thomas Jansson and Yigitcan Karabulut	
How Subprime Borrowers and Mortgage Brokers Shared the Piecial Behavior	2014:286
by Antje Berndt, Burton Hollifield and Patrik Sandås	
The Macro-Financial Implications of House Price-Indexed Mortgage Contracts	2014:287
by Isaiah Hull	
Does Trading Anonymously Enhance Liquidity?	2014:288
by Patrick J. Dennis and Patrik Sandås	
Systematic bailout guarantees and tacit coordination	2014:289
by Christoph Bertsch, Claudio Calcagno and Mark Le Quement	2011.200
Selection Effects in Producer-Price Setting	2014:290
by Mikael Carlsson	2014.290
Dynamic Demand Adjustment and Exchange Rate Volatility	2014:291
by Vesna Corbo	2014.291
-	2014:292
Forward Guidance and Long Term Interest Rates: Inspecting the Mechanism	2014.292
by Ferre De Graeve, Pelin Ilbas & Raf Wouters	0011000
Firm-Level Shocks and Labor Adjustments	2014:293
by Mikael Carlsson, Julián Messina and Oskar Nordström Skans	
A wake-up call theory of contagion	2015:294
by Toni Ahnert and Christoph Bertsch	
Risks in macroeconomic fundamentals and excess bond returns predictability	2015:295
by Rafael B. De Rezende	
The Importance of Reallocation for Productivity Growth: Evidence from European and US Banking	2015:296
by Jaap W.B. Bos and Peter C. van Santen	
SPEEDING UP MCMC BY EFFICIENT DATA SUBSAMPLING	2015:297
by Matias Quiroz, Mattias Villani and Robert Kohn	
Amortization Requirements and Household Indebtedness: An Application to Swedish-Style Mortgages	2015:298
by Isaiah Hull	
Fuel for Economic Growth?	2015:299
by Johan Gars and Conny Olovsson	
Searching for Information	2015:300
by Jungsuk Han and Francesco Sangiorgi	
What Broke First? Characterizing Sources of Structural Change Prior to the Great Recession	2015:301
by Isaiah Hull	
Price Level Targeting and Risk Management	2015:302
by Roberto Billi	
Central bank policy paths and market forward rates: A simple model	2015:303
by Ferre De Graeve and Jens Iversen	
Jump-Starting the Euro Area Recovery: Would a Rise in Core Fiscal Spending Help the Periphery?	2015:304
by Olivier Blanchard, Christopher J. Erceg and Jesper Lindé	
Bringing Financial Stability into Monetary Policy*	2015:305
by Eric M. Leeper and James M. Nason	_0.0000
SCALABLE MCMC FOR LARGE DATA PROBLEMS USING DATA SUBSAMPLING AND	2015:306
THE DIFFERENCE ESTIMATOR	2010.000
by MATIAS QUIROZ, MATTIAS VILLANI AND ROBERT KOHN	

SPEEDING UP MCMC BY DELAYED ACCEPTANCE AND DATA SUBSAMPLING by MATIAS QUIROZ	2015:307
Modeling financial sector joint tail risk in the euro area	2015:308
by André Lucas, Bernd Schwaab and Xin Zhang	
Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting	2015:309
by André Lucas and Xin Zhang	
On the Theoretical Efficacy of Quantitative Easing at the Zero Lower Bound	2015:310
by Paola Boel and Christopher J. Waller	
Optimal Inflation with Corporate Taxation and Financial Constraints	2015:311
by Daria Finocchiaro, Giovanni Lombardo, Caterina Mendicino and Philippe Weil	
Fire Sale Bank Recapitalizations	2015:312
by Christoph Bertsch and Mike Mariathasan	
Since you're so rich, you must be really smart: Talent and the Finance Wage Premium	2015:313
by Michael Böhm, Daniel Metzger and Per Strömberg	
Debt, equity and the equity price puzzle	2015:314
by Daria Finocchiaro and Caterina Mendicino	
Trade Credit: Contract-Level Evidence Contradicts Current Theories	2016:315
by Tore Ellingsen, Tor Jacobson and Erik von Schedvin	
Double Liability in a Branch Banking System: Historical Evidence from Canada	2016:316
by Anna Grodecka and Antonis Kotidis	2010.010
Subprime Borrowers, Securitization and the Transmission of Business Cycles	2016:317
by Anna Grodecka	2010.011
Real-Time Forecasting for Monetary Policy Analysis: The Case of Sveriges Riksbank	2016:318
by Jens Iversen, Stefan Laséen, Henrik Lundvall and Ulf Söderström	2010.010
Fed Liftoff and Subprime Loan Interest Rates: Evidence from the Peer-to-Peer Lending	2016:319
by Christoph Bertsch, Isaiah Hull and Xin Zhang	2010.013
Curbing Shocks to Corporate Liquidity: The Role of Trade Credit	2016:320
by Niklas Amberg, Tor Jacobson, Erik von Schedvin and Robert Townsend	2010.020
Firms' Strategic Choice of Loan Delinguencies	2016:321
by Paola Morales-Acevedo	2010.321
Fiscal Consolidation Under Imperfect Credibility	2016:322
by Matthieu Lemoine and Jesper Lindé	2010.322
	2016:222
Challenges for Central Banks' Macro Models	2016:323
by Jesper Lindé, Frank Smets and Rafael Wouters	0040.004
The interest rate effects of government bond purchases away from the lower bound	2016:324
by Rafael B. De Rezende	0040.005
COVENANT-LIGHT CONTRACTS AND CREDITOR COORDINATION	2016:325
by Bo Becker and Victoria Ivashina	
Endogenous Separations, Wage Rigidities and Employment Volatility	2016:326
by Mikael Carlsson and Andreas Westermark	
Renovatio Monetae: Gesell Taxes in Practice	2016:327
by Roger Svensson and Andreas Westermark	
Adjusting for Information Content when Comparing Forecast Performance	2016:328
by Michael K. Andersson, Ted Aranki and André Reslow	
Economic Scarcity and Consumers' Credit Choice	2016:329
by Marieke Bos, Chloé Le Coq and Peter van Santen	
Uncertain pension income and household saving	2016:330
by Peter van Santen	
Money, Credit and Banking and the Cost of Financial Activity	2016:331
by Paola Boel and Gabriele Camera	
Oil prices in a real-business-cycle model with precautionary demand for oil	2016:332
by Conny Olovsson	
Financial Literacy Externalities	2016:333
by Michael Haliasso, Thomas Jansson and Yigitcan Karabulut	

The timing of uncertainty shocks in a small open economy by Hanna Armelius, Isaiah Hull and Hanna Stenbacka Köhler	2016:334
Quantitative easing and the price-liquidity trade-off	2017:335
by Marien Ferdinandusse, Maximilian Freier and Annukka Ristiniemi	
What Broker Charges Reveal about Mortgage Credit Risk by Antje Berndt, Burton Hollifield and Patrik Sandåsi	2017:336
Asymmetric Macro-Financial Spillovers	2017:337
by Kristina Bluwstein	
Latency Arbitrage When Markets Become Faster	2017:338
by Burton Hollifield, Patrik Sandås and Andrew Todd	
How big is the toolbox of a central banker? Managing expectations with policy-rate forecasts: Evidence from Sweden	2017:339
by Magnus Åhl	
International business cycles: quantifying the effects of a world market for oil	2017:340
by Johan Gars and Conny Olovsson I	
Systemic Risk: A New Trade-Off for Monetary Policy?	2017:341
by Stefan Laséen, Andrea Pescatori and Jarkko Turunen	
Household Debt and Monetary Policy: Revealing the Cash-Flow Channel	2017:342
by Martin Flodén, Matilda Kilström, Jósef Sigurdsson and Roine Vestman	
House Prices, Home Equity, and Personal Debt Composition	2017:343
by Jieying Li and Xin Zhang	
Identification and Estimation issues in Exponential Smooth Transition Autoregressive Models	2017:344
by Daniel Buncic	
Domestic and External Sovereign Debt	2017:345
by Paola Di Casola and Spyridon Sichlimiris	
The Role of Trust in Online Lending by Christoph Bertsch, Isaiah Hull, Yingjie Qi and Xin Zhang	2017:346
On the effectiveness of loan-to-value regulation in a multiconstraint framework by Anna Grodecka	2017:347
Shock Propagation and Banking Structure by Mariassunta Giannetti and Farzad Saidi	2017:348
The Granular Origins of House Price Volatility	2017:349
by Isaiah Hull, Conny Olovsson, Karl Walentin and Andreas Westermark	
Should We Use Linearized Models To Calculate Fiscal Multipliers?	2017:350
by Jesper Lindé and Mathias Trabandt	
The impact of monetary policy on household borrowing – a high-frequency IV identification by Maria Sandström	2018:351
Conditional exchange rate pass-through: evidence from Sweden by Vesna Corbo and Paola Di Casola	2018:352
Learning on the Job and the Cost of Business Cycles by Karl Walentin and Andreas Westermark	2018:353
Trade Credit and Pricing: An Empirical Evaluation by Niklas Amberg, Tor Jacobson and Erik von Schedvin	2018:354
A shadow rate without a lower bound constraint by Rafael B. De Rezende and Annukka Ristiniemi	2018:355
Reduced "Border Effects", FTAs and International Trade by Sebastian Franco and Erik Frohm	2018:356
Spread the Word: International Spillovers from Central Bank Communication by Hanna Armelius, Christoph Bertsch, Isaiah Hull and Xin Zhang	2018:357
Predictors of Bank Distress: The 1907 Crisis in Sweden by Anna Grodecka, Seán Kenny and Anders Ögren	2018:358

Diversication Advantages During the Global Financial Crisis	2018:359
by Mats Levander	
Towards Technology-News-Driven Business Cycles by Paola Di Casola and Spyridon Sichlimiris	2018:360
The Housing Wealth Effect: Quasi-Experimental Evidence by Dany Kessel, Björn Tyrefors and Roine	2018:361
Identification Versus Misspecification in New Keynesian Monetary Policy Models by Malin Adolfson, Stefan Laseén, Jesper Lindé and Marco Ratto	2018:362
The Macroeconomic Effects of Trade Tariffs: Revisiting the Lerner Symmetry Result by Jesper Lindé and Andrea Pescatori	2019:363
Biased Forecasts to Affect Voting Decisions? The Brexit Case by Davide Cipullo and André Reslow	2019:364
The Interaction Between Fiscal and Monetary Policies: Evidence from Sweden by Sebastian Ankargren and Hovick Shahnazarian	2019:365
Designing a Simple Loss Function for Central Banks: Does a Dual Mandate Make Sense? by Davide Debortoli, Jinill Kim and Jesper Lindé	2019:366
Gains from Wage Flexibility and the Zero Lower Bound by Roberto M. Billi and Jordi Galí	2019:367
Fixed Wage Contracts and Monetary Non-Neutrality by Maria Björklund, Mikael Carlsson and Oskar Nordström Skans	2019:368
The Consequences of Uncertainty: Climate Sensitivity and Economic Sensitivity to the Climate by John Hassler, Per Krusell and Conny Olovsson	2019:369
Does Inflation Targeting Reduce the Dispersion of Price Setters' Inflation Expectations? by Charlotte Paulie	2019:370
Subsampling Sequential Monte Carlo for Static Bayesian Models by David Gunawan, Khue-Dung Dang, Matias Quiroz, Robert Kohn and Minh-Ngoc Tran	2019:371
Hamiltonian Monte Carlo with Energy Conserving Subsampling by Khue-Dung Dang, Matias Quiroz, Robert Kohn, Minh-Ngoc Tran and Mattias Villani	2019:372
Institutional Investors and Corporate Investment by Cristina Cella	2019:373
The Impact of Local Taxes and Public Services on Property Values by Anna Grodecka and Isaiah Hull	2019:374
Directed technical change as a response to natural-resource scarcity by John Hassler, Per Krusell and Conny Olovsson	2019:375
A Tale of Two Countries: Cash Demand in Canada and Sweden by Walter Engert, Ben Fung and Björn Segendorf	2019:376
Tax and spending shocks in the open economy: are the deficits twins? by Mathias Klein and Ludger Linnemann	2019:377
Mind the gap! Stylized dynamic facts and structural models by Fabio Canova and Filippo Ferroni	2019:378
Financial Buffers, Unemployment Duration and Replacement Labor Income by Mats Levander	2019:379
Inefficient Use of Competitors' Forecasts? by André Reslow	2019:380
How Much Information Do Monetary Policy Committees Disclose? Evidence from the FOMC's Minutes and Transcripts by Mikael Apel, Marianna Blix Grimaldi and Isaiah Hull	2019:381

Sveriges Riksbank Visiting address: Brunkebergs torg 11 Mail address: se-103 37 Stockholm

Website: www.riksbank.se Telephone: +46 8 787 00 00, Fax: +46 8 21 05 31 E-mail: registratorn@riksbank.se